跳到主要内容
这将帮助您开始使用 LangChain 的 OpenAIEmbeddings 嵌入模型。有关 OpenAIEmbeddings 功能和配置选项的详细文档,请参阅API 参考

概览

集成详情

类别本地Python 支持下载量版本
OpenAIEmbeddings@langchain/openaiNPM - DownloadsNPM - Version

设置

要访问 OpenAIEmbeddings 嵌入模型,您需要创建一个 OpenAI 账户,获取 API 密钥,并安装 @langchain/openai 集成包。

凭据

前往platform.openai.com注册 OpenAI 并生成 API 密钥。完成此操作后,设置 OPENAI_API_KEY 环境变量。
export OPENAI_API_KEY="your-api-key"
如果您想获取模型调用的自动化跟踪,您还可以通过取消注释下方来设置您的 LangSmith API 密钥
# export LANGSMITH_TRACING="true"
# export LANGSMITH_API_KEY="your-api-key"

安装

LangChain OpenAIEmbeddings 集成位于 @langchain/openai 包中。
npm install @langchain/openai @langchain/core

实例化

现在我们可以实例化我们的模型对象并生成聊天完成
import { OpenAIEmbeddings } from "@langchain/openai";

const embeddings = new OpenAIEmbeddings({
  apiKey: "YOUR-API-KEY", // In Node.js defaults to process.env.OPENAI_API_KEY
  batchSize: 512, // Default value if omitted is 512. Max is 2048
  model: "text-embedding-3-large",
});
如果您是某个组织的一员,您可以将 process.env.OPENAI_ORGANIZATION 设置为您的 OpenAI 组织 ID,或者在初始化模型时将其作为 organization 传入。

索引和检索

嵌入模型通常用于检索增强生成 (RAG) 流程中,既作为索引数据的一部分,也用于后续检索数据。有关更详细的说明,请参阅学习选项卡下的 RAG 教程。 下面,我们将演示如何使用我们上面初始化的 embeddings 对象来索引和检索数据。在此示例中,我们将使用演示 MemoryVectorStore 索引和检索一个示例文档。
// Create a vector store with a sample text
import { MemoryVectorStore } from "@langchain/classic/vectorstores/memory";

const text = "LangChain is the framework for building context-aware reasoning applications";

const vectorstore = await MemoryVectorStore.fromDocuments(
  [{ pageContent: text, metadata: {} }],
  embeddings,
);

// Use the vector store as a retriever that returns a single document
const retriever = vectorstore.asRetriever(1);

// Retrieve the most similar text
const retrievedDocuments = await retriever.invoke("What is LangChain?");

retrievedDocuments[0].pageContent;
LangChain is the framework for building context-aware reasoning applications

直接使用

在底层,向量存储和检索器实现分别调用 embeddings.embedDocument(...)embeddings.embedQuery(...) 来为 fromDocuments 和检索器的 invoke 操作中使用的文本创建嵌入。 您可以直接调用这些方法来获取您自己用例的嵌入。

嵌入单个文本

您可以使用 embedQuery 嵌入查询以进行搜索。这会生成特定于查询的向量表示。
const singleVector = await embeddings.embedQuery(text);

console.log(singleVector.slice(0, 100));
[
    -0.01927683,  0.0037708976,  -0.032942563,  0.0037671267,  0.008175306,
   -0.012511838,  -0.009713832,   0.021403614,  -0.015377721, 0.0018684798,
    0.020574018,   0.022399133,   -0.02322873,   -0.01524951,  -0.00504169,
   -0.007375876,   -0.03448109, 0.00015130726,   0.021388533, -0.012564631,
   -0.020031009,   0.027406884,  -0.039217334,    0.03036327,  0.030393435,
   -0.021750538,   0.032610722,  -0.021162277,  -0.025898525,  0.018869571,
    0.034179416,  -0.013371604,  0.0037652412,   -0.02146395, 0.0012641934,
   -0.055688616,    0.05104287,  0.0024982197,  -0.019095825, 0.0037369595,
  0.00088757504,   0.025189597,  -0.018779071,   0.024978427,  0.016833287,
  -0.0025868358,  -0.011727491, -0.0021154736,  -0.017738303, 0.0013839195,
  -0.0131151825,   -0.05405959,   0.029729757,  -0.003393808,  0.019774588,
    0.028885076,   0.004355387,   0.026094612,    0.06479911,  0.038040817,
    -0.03478276,  -0.012594799,  -0.024767255, -0.0031430433,  0.017874055,
   -0.015294761,   0.005709139,   0.025355516,   0.044798266,   0.02549127,
    -0.02524993, 0.00014553308,  -0.019427665,  -0.023545485,  0.008748483,
    0.019850006,  -0.028417485,  -0.001860938,   -0.02318348, -0.010799851,
     0.04793565, -0.0048983963,    0.02193154,  -0.026411368,  0.026426451,
   -0.012149832,   0.035355937,  -0.047814984,  -0.027165547, -0.008228099,
   -0.007737882,   0.023726488,  -0.046487626,  -0.007783133, -0.019638835,
     0.01793439,  -0.018024892,  0.0030336871,  -0.019578502, 0.0042837397
]

嵌入多个文本

您可以使用 embedDocuments 嵌入多个文本以进行索引。此方法使用的内部机制可能(但不一定)与嵌入查询不同。
const text2 = "LangGraph is a library for building stateful, multi-actor applications with LLMs";

const vectors = await embeddings.embedDocuments([text, text2]);

console.log(vectors[0].slice(0, 100));
console.log(vectors[1].slice(0, 100));
[
    -0.01927683,  0.0037708976,  -0.032942563,  0.0037671267,  0.008175306,
   -0.012511838,  -0.009713832,   0.021403614,  -0.015377721, 0.0018684798,
    0.020574018,   0.022399133,   -0.02322873,   -0.01524951,  -0.00504169,
   -0.007375876,   -0.03448109, 0.00015130726,   0.021388533, -0.012564631,
   -0.020031009,   0.027406884,  -0.039217334,    0.03036327,  0.030393435,
   -0.021750538,   0.032610722,  -0.021162277,  -0.025898525,  0.018869571,
    0.034179416,  -0.013371604,  0.0037652412,   -0.02146395, 0.0012641934,
   -0.055688616,    0.05104287,  0.0024982197,  -0.019095825, 0.0037369595,
  0.00088757504,   0.025189597,  -0.018779071,   0.024978427,  0.016833287,
  -0.0025868358,  -0.011727491, -0.0021154736,  -0.017738303, 0.0013839195,
  -0.0131151825,   -0.05405959,   0.029729757,  -0.003393808,  0.019774588,
    0.028885076,   0.004355387,   0.026094612,    0.06479911,  0.038040817,
    -0.03478276,  -0.012594799,  -0.024767255, -0.0031430433,  0.017874055,
   -0.015294761,   0.005709139,   0.025355516,   0.044798266,   0.02549127,
    -0.02524993, 0.00014553308,  -0.019427665,  -0.023545485,  0.008748483,
    0.019850006,  -0.028417485,  -0.001860938,   -0.02318348, -0.010799851,
     0.04793565, -0.0048983963,    0.02193154,  -0.026411368,  0.026426451,
   -0.012149832,   0.035355937,  -0.047814984,  -0.027165547, -0.008228099,
   -0.007737882,   0.023726488,  -0.046487626,  -0.007783133, -0.019638835,
     0.01793439,  -0.018024892,  0.0030336871,  -0.019578502, 0.0042837397
]
[
   -0.010181213,   0.023419594,   -0.04215527, -0.0015320902,  -0.023573855,
  -0.0091644935,  -0.014893179,   0.019016149,  -0.023475688,  0.0010219777,
    0.009255648,    0.03996757,   -0.04366983,   -0.01640774,  -0.020194141,
    0.019408813,  -0.027977299,  -0.022017224,   0.013539891,  -0.007769135,
    0.032647192,  -0.015089511,  -0.022900717,   0.023798235,   0.026084099,
   -0.024625633,   0.035003178,  -0.017978394,  -0.049615882,   0.013364594,
    0.031132633,   0.019142363,   0.023195215,  -0.038396914,   0.005584942,
   -0.031946007,   0.053682756, -0.0036356465,   0.011240003,  0.0056690844,
  -0.0062791156,   0.044146635,  -0.037387207,    0.01300699,   0.018946031,
   0.0050415234,   0.029618073,  -0.021750772,  -0.000649473, 0.00026951815,
   -0.014710871,  -0.029814405,    0.04204308,  -0.014710871,  0.0039616977,
   -0.021512369,   0.054608323,   0.021484323,    0.02790718,  -0.010573876,
   -0.023952495,  -0.035143413,  -0.048802506, -0.0075798146,   0.023279356,
   -0.022690361,  -0.016590048,  0.0060477243,   0.014100839,   0.005476258,
   -0.017221114, -0.0100059165,  -0.017922299,  -0.021989176,    0.01830094,
     0.05516927,   0.001033372,  0.0017310516,   -0.00960624,  -0.037864015,
    0.013063084,   0.006591143,  -0.010160177,  0.0011394264,    0.04953174,
    0.004806626,   0.029421741,  -0.037751824,   0.003618117,   0.007162609,
    0.027696826, -0.0021070621,  -0.024485396, -0.0042141243,   -0.02801937,
   -0.019605145,   0.016281527,  -0.035143413,    0.01640774,   0.042323552
]

指定维度

使用 text-embedding-3 类模型,您可以指定要返回的嵌入维度。例如,默认情况下,text-embedding-3-large 返回维度为 3072 的嵌入。
import { OpenAIEmbeddings } from "@langchain/openai";

const embeddingsDefaultDimensions = new OpenAIEmbeddings({
  model: "text-embedding-3-large",
});

const vectorsDefaultDimensions = await embeddingsDefaultDimensions.embedDocuments(["some text"]);
console.log(vectorsDefaultDimensions[0].length);
3072
但是,通过传入 dimensions: 1024,我们可以将嵌入的维度减小到 1024。
import { OpenAIEmbeddings } from "@langchain/openai";

const embeddings1024 = new OpenAIEmbeddings({
  model: "text-embedding-3-large",
  dimensions: 1024,
});

const vectors1024 = await embeddings1024.embedDocuments(["some text"]);
console.log(vectors1024[0].length);
1024

自定义 URL

您可以通过传入 configuration 参数来自定义 SDK 发送请求的基本 URL,如下所示:
import { OpenAIEmbeddings } from "@langchain/openai";

const model = new OpenAIEmbeddings({
  configuration: {
    baseURL: "https://your_custom_url.com",
  },
});
您还可以传递官方 SDK 接受的其他 ClientOptions 参数。 如果您在 Azure OpenAI 上托管,请参阅专用页面

API 参考

有关所有 OpenAIEmbeddings 功能和配置的详细文档,请参阅API 参考
以编程方式连接这些文档到 Claude、VSCode 等,通过 MCP 获取实时答案。
© . This site is unofficial and not affiliated with LangChain, Inc.