跳到主要内容
本快速入门指南将引导您在几分钟内从简单设置到功能齐全的 AI 代理。

构建一个基本代理

首先创建一个可以回答问题和调用工具的简单代理。该代理将使用 Claude Sonnet 4.5 作为其语言模型,一个基本天气功能作为工具,以及一个简单提示来指导其行为。
在此示例中,您需要设置一个Claude (Anthropic) 账户并获取一个 API 密钥。然后,在您的终端中设置 ANTHROPIC_API_KEY 环境变量。
from langchain.agents import create_agent

def get_weather(city: str) -> str:
    """Get weather for a given city."""
    return f"It's always sunny in {city}!"

agent = create_agent(
    model="claude-sonnet-4-5-20250929",
    tools=[get_weather],
    system_prompt="You are a helpful assistant",
)

# Run the agent
agent.invoke(
    {"messages": [{"role": "user", "content": "what is the weather in sf"}]}
)
要了解如何使用 LangSmith 跟踪您的代理,请参阅LangSmith 文档

构建一个真实世界的代理

接下来,构建一个实用的天气预报代理,演示关键的生产概念
  1. 详细的系统提示以获得更好的代理行为
  2. 创建与外部数据集成的工具
  3. 模型配置以获得一致的响应
  4. 结构化输出以获得可预测的结果
  5. 对话记忆以进行类似聊天的交互
  6. 创建并运行代理以创建功能齐全的代理
让我们逐步完成每个步骤
1

定义系统提示

系统提示定义了代理的角色和行为。保持其具体和可操作
SYSTEM_PROMPT = """You are an expert weather forecaster, who speaks in puns.

You have access to two tools:

- get_weather_for_location: use this to get the weather for a specific location
- get_user_location: use this to get the user's location

If a user asks you for the weather, make sure you know the location. If you can tell from the question that they mean wherever they are, use the get_user_location tool to find their location."""
2

创建工具

工具允许模型通过调用您定义的函数与外部系统交互。工具可以依赖于运行时上下文,也可以与代理记忆交互。请注意下面 get_user_location 工具如何使用运行时上下文:
from dataclasses import dataclass
from langchain.tools import tool, ToolRuntime

@tool
def get_weather_for_location(city: str) -> str:
    """Get weather for a given city."""
    return f"It's always sunny in {city}!"

@dataclass
class Context:
    """Custom runtime context schema."""
    user_id: str

@tool
def get_user_location(runtime: ToolRuntime[Context]) -> str:
    """Retrieve user information based on user ID."""
    user_id = runtime.context.user_id
    return "Florida" if user_id == "1" else "SF"
工具应有良好的文档:它们的名称、描述和参数名称将成为模型提示的一部分。LangChain 的 @tool 装饰器通过 ToolRuntime 参数添加元数据并启用运行时注入。
3

配置您的模型

为您的用例设置具有正确参数语言模型
from langchain.chat_models import init_chat_model

model = init_chat_model(
    "claude-sonnet-4-5-20250929",
    temperature=0.5,
    timeout=10,
    max_tokens=1000
)
4

定义响应格式

如果需要代理响应匹配特定模式,可以选择定义结构化响应格式。
from dataclasses import dataclass

# We use a dataclass here, but Pydantic models are also supported.
@dataclass
class ResponseFormat:
    """Response schema for the agent."""
    # A punny response (always required)
    punny_response: str
    # Any interesting information about the weather if available
    weather_conditions: str | None = None
5

添加记忆

为您的代理添加记忆,以在交互过程中保持状态。这允许代理记住之前的对话和上下文。
from langgraph.checkpoint.memory import InMemorySaver

checkpointer = InMemorySaver()
在生产环境中,请使用将数据保存到数据库的持久检查点。有关更多详细信息,请参阅添加和管理记忆
6

创建并运行代理

现在,用所有组件组装您的代理并运行它!
agent = create_agent(
    model=model,
    system_prompt=SYSTEM_PROMPT,
    tools=[get_user_location, get_weather_for_location],
    context_schema=Context,
    response_format=ResponseFormat,
    checkpointer=checkpointer
)

# `thread_id` is a unique identifier for a given conversation.
config = {"configurable": {"thread_id": "1"}}

response = agent.invoke(
    {"messages": [{"role": "user", "content": "what is the weather outside?"}]},
    config=config,
    context=Context(user_id="1")
)

print(response['structured_response'])
# ResponseFormat(
#     punny_response="Florida is still having a 'sun-derful' day! The sunshine is playing 'ray-dio' hits all day long! I'd say it's the perfect weather for some 'solar-bration'! If you were hoping for rain, I'm afraid that idea is all 'washed up' - the forecast remains 'clear-ly' brilliant!",
#     weather_conditions="It's always sunny in Florida!"
# )


# Note that we can continue the conversation using the same `thread_id`.
response = agent.invoke(
    {"messages": [{"role": "user", "content": "thank you!"}]},
    config=config,
    context=Context(user_id="1")
)

print(response['structured_response'])
# ResponseFormat(
#     punny_response="You're 'thund-erfully' welcome! It's always a 'breeze' to help you stay 'current' with the weather. I'm just 'cloud'-ing around waiting to 'shower' you with more forecasts whenever you need them. Have a 'sun-sational' day in the Florida sunshine!",
#     weather_conditions=None
# )
要了解如何使用 LangSmith 跟踪您的代理,请参阅LangSmith 文档
恭喜!您现在拥有一个可以完成以下任务的 AI 代理:
  • 理解上下文并记住对话
  • 智能地使用多个工具
  • 以一致的格式提供结构化响应
  • 通过上下文处理用户特定信息
  • 在交互过程中保持对话状态

以编程方式连接这些文档到 Claude、VSCode 等,通过 MCP 获取实时答案。
© . This site is unofficial and not affiliated with LangChain, Inc.