跳到主要内容

概览

记忆是一个系统,用于存储关于先前交互的信息。对于 AI 代理来说,记忆至关重要,因为它使它们能够记住先前的交互,从反馈中学习,并适应用户偏好。随着代理处理涉及大量用户交互的更复杂任务,这种能力对于效率和用户满意度都变得至关重要。 短期记忆让你的应用程序能够记住单个线程或对话中的先前交互。
一个线程以会话的形式组织多个交互,类似于电子邮件将消息分组到单个对话中。
对话历史是短期记忆最常见的形式。长对话对当今的 LLM 提出了挑战;完整的历史可能无法完全适应 LLM 的上下文窗口,导致上下文丢失或错误。 即使你的模型支持完整的上下文长度,大多数 LLM 在长上下文中表现仍然不佳。它们会被过时或偏离主题的内容“分散注意力”,同时响应时间更慢,成本更高。 聊天模型使用消息接受上下文,其中包括指令(系统消息)和输入(人类消息)。在聊天应用程序中,消息在人类输入和模型响应之间交替,导致消息列表随着时间增长。由于上下文窗口有限,许多应用程序可以从使用技术来删除或“忘记”过时信息中受益。

用法

要为代理添加短期记忆(线程级持久性),你需要在创建代理时指定一个 checkpointer
LangChain 的代理将短期记忆作为代理状态的一部分进行管理。通过将这些存储在图的状态中,代理可以访问给定对话的完整上下文,同时保持不同线程之间的分离。状态使用检查点器持久化到数据库(或内存)中,以便线程可以随时恢复。当代理被调用或一个步骤(如工具调用)完成时,短期记忆会更新,并且状态会在每个步骤开始时读取。
from langchain.agents import create_agent
from langgraph.checkpoint.memory import InMemorySaver  


agent = create_agent(
    "gpt-5",
    [get_user_info],
    checkpointer=InMemorySaver(),  
)

agent.invoke(
    {"messages": [{"role": "user", "content": "Hi! My name is Bob."}]},
    {"configurable": {"thread_id": "1"}},  
)

生产中

在生产中,使用由数据库支持的检查点器
pip install langgraph-checkpoint-postgres
from langchain.agents import create_agent

from langgraph.checkpoint.postgres import PostgresSaver  


DB_URI = "postgresql://postgres:postgres@localhost:5442/postgres?sslmode=disable"
with PostgresSaver.from_conn_string(DB_URI) as checkpointer:
    checkpointer.setup() # auto create tables in PostgresSql
    agent = create_agent(
        "gpt-5",
        [get_user_info],
        checkpointer=checkpointer,  
    )

自定义代理记忆

默认情况下,代理使用AgentState来管理短期记忆,特别是通过 messages 键管理对话历史。 你可以扩展AgentState以添加额外的字段。自定义状态模式通过state_schema参数传递给create_agent
from langchain.agents import create_agent, AgentState
from langgraph.checkpoint.memory import InMemorySaver


class CustomAgentState(AgentState):  
    user_id: str
    preferences: dict

agent = create_agent(
    "gpt-5",
    [get_user_info],
    state_schema=CustomAgentState,  
    checkpointer=InMemorySaver(),
)

# Custom state can be passed in invoke
result = agent.invoke(
    {
        "messages": [{"role": "user", "content": "Hello"}],
        "user_id": "user_123",  
        "preferences": {"theme": "dark"}  
    },
    {"configurable": {"thread_id": "1"}})

常见模式

启用短期记忆后,长对话可能会超出 LLM 的上下文窗口。常见的解决方案有: 这使得代理可以跟踪对话,而不会超出 LLM 的上下文窗口。

截断消息

大多数 LLM 都有一个最大支持的上下文窗口(以 token 计)。 决定何时截断消息的一种方法是计算消息历史中的 token 数量,并在接近该限制时进行截断。如果你使用 LangChain,你可以使用截断消息工具,并指定要从列表中保留的 token 数量,以及用于处理边界的 strategy(例如,保留最后 max_tokens)。 要在代理中截断消息历史,请使用@before_model中间件装饰器:
from langchain.messages import RemoveMessage
from langgraph.graph.message import REMOVE_ALL_MESSAGES
from langgraph.checkpoint.memory import InMemorySaver
from langchain.agents import create_agent, AgentState
from langchain.agents.middleware import before_model
from langgraph.runtime import Runtime
from langchain_core.runnables import RunnableConfig
from typing import Any


@before_model
def trim_messages(state: AgentState, runtime: Runtime) -> dict[str, Any] | None:
    """Keep only the last few messages to fit context window."""
    messages = state["messages"]

    if len(messages) <= 3:
        return None  # No changes needed

    first_msg = messages[0]
    recent_messages = messages[-3:] if len(messages) % 2 == 0 else messages[-4:]
    new_messages = [first_msg] + recent_messages

    return {
        "messages": [
            RemoveMessage(id=REMOVE_ALL_MESSAGES),
            *new_messages
        ]
    }

agent = create_agent(
    model,
    tools=tools,
    middleware=[trim_messages],
    checkpointer=InMemorySaver(),
)

config: RunnableConfig = {"configurable": {"thread_id": "1"}}

agent.invoke({"messages": "hi, my name is bob"}, config)
agent.invoke({"messages": "write a short poem about cats"}, config)
agent.invoke({"messages": "now do the same but for dogs"}, config)
final_response = agent.invoke({"messages": "what's my name?"}, config)

final_response["messages"][-1].pretty_print()
"""
================================== Ai Message ==================================

Your name is Bob. You told me that earlier.
If you'd like me to call you a nickname or use a different name, just say the word.
"""

删除消息

你可以从图状态中删除消息以管理消息历史。 这在你想删除特定消息或清除整个消息历史时很有用。 要从图状态中删除消息,你可以使用 RemoveMessage 要使 RemoveMessage 工作,你需要使用带有 add_messages reducer 的状态键。 默认的AgentState提供了这一点。 要删除特定消息:
from langchain.messages import RemoveMessage  

def delete_messages(state):
    messages = state["messages"]
    if len(messages) > 2:
        # remove the earliest two messages
        return {"messages": [RemoveMessage(id=m.id) for m in messages[:2]]}  
删除所有消息
from langgraph.graph.message import REMOVE_ALL_MESSAGES

def delete_messages(state):
    return {"messages": [RemoveMessage(id=REMOVE_ALL_MESSAGES)]}  
删除消息时,请确保生成的消息历史有效。检查你正在使用的 LLM 提供商的限制。例如:
  • 一些提供商期望消息历史以 user 消息开始
  • 大多数提供商要求带有工具调用的 assistant 消息后跟相应的 tool 结果消息。
from langchain.messages import RemoveMessage
from langchain.agents import create_agent, AgentState
from langchain.agents.middleware import after_model
from langgraph.checkpoint.memory import InMemorySaver
from langgraph.runtime import Runtime
from langchain_core.runnables import RunnableConfig


@after_model
def delete_old_messages(state: AgentState, runtime: Runtime) -> dict | None:
    """Remove old messages to keep conversation manageable."""
    messages = state["messages"]
    if len(messages) > 2:
        # remove the earliest two messages
        return {"messages": [RemoveMessage(id=m.id) for m in messages[:2]]}
    return None


agent = create_agent(
    "gpt-5-nano",
    tools=[],
    system_prompt="Please be concise and to the point.",
    middleware=[delete_old_messages],
    checkpointer=InMemorySaver(),
)

config: RunnableConfig = {"configurable": {"thread_id": "1"}}

for event in agent.stream(
    {"messages": [{"role": "user", "content": "hi! I'm bob"}]},
    config,
    stream_mode="values",
):
    print([(message.type, message.content) for message in event["messages"]])

for event in agent.stream(
    {"messages": [{"role": "user", "content": "what's my name?"}]},
    config,
    stream_mode="values",
):
    print([(message.type, message.content) for message in event["messages"]])
[('human', "hi! I'm bob")]
[('human', "hi! I'm bob"), ('ai', 'Hi Bob! Nice to meet you. How can I help you today? I can answer questions, brainstorm ideas, draft text, explain things, or help with code.')]
[('human', "hi! I'm bob"), ('ai', 'Hi Bob! Nice to meet you. How can I help you today? I can answer questions, brainstorm ideas, draft text, explain things, or help with code.'), ('human', "what's my name?")]
[('human', "hi! I'm bob"), ('ai', 'Hi Bob! Nice to meet you. How can I help you today? I can answer questions, brainstorm ideas, draft text, explain things, or help with code.'), ('human', "what's my name?"), ('ai', 'Your name is Bob. How can I help you today, Bob?')]
[('human', "what's my name?"), ('ai', 'Your name is Bob. How can I help you today, Bob?')]

总结消息

如上所示,截断或删除消息的问题在于,你可能会因消息队列的淘汰而丢失信息。因此,一些应用程序受益于使用聊天模型总结消息历史的更复杂方法。 要在代理中总结消息历史,请使用内置的SummarizationMiddleware
from langchain.agents import create_agent
from langchain.agents.middleware import SummarizationMiddleware
from langgraph.checkpoint.memory import InMemorySaver
from langchain_core.runnables import RunnableConfig


checkpointer = InMemorySaver()

agent = create_agent(
    model="gpt-4o",
    tools=[],
    middleware=[
        SummarizationMiddleware(
            model="gpt-4o-mini",
            max_tokens_before_summary=4000,  # Trigger summarization at 4000 tokens
            messages_to_keep=20,  # Keep last 20 messages after summary
        )
    ],
    checkpointer=checkpointer,
)

config: RunnableConfig = {"configurable": {"thread_id": "1"}}
agent.invoke({"messages": "hi, my name is bob"}, config)
agent.invoke({"messages": "write a short poem about cats"}, config)
agent.invoke({"messages": "now do the same but for dogs"}, config)
final_response = agent.invoke({"messages": "what's my name?"}, config)

final_response["messages"][-1].pretty_print()
"""
================================== Ai Message ==================================

Your name is Bob!
"""
有关更多配置选项,请参阅SummarizationMiddleware

访问记忆

你可以通过以下几种方式访问和修改代理的短期记忆(状态):

工具

在工具中读取短期记忆

使用 ToolRuntime 参数在工具中访问短期记忆(状态)。 tool_runtime 参数对工具签名是隐藏的(因此模型看不到它),但工具可以通过它访问状态。
from langchain.agents import create_agent, AgentState
from langchain.tools import tool, ToolRuntime


class CustomState(AgentState):
    user_id: str

@tool
def get_user_info(
    runtime: ToolRuntime
) -> str:
    """Look up user info."""
    user_id = runtime.state["user_id"]
    return "User is John Smith" if user_id == "user_123" else "Unknown user"

agent = create_agent(
    model="gpt-5-nano",
    tools=[get_user_info],
    state_schema=CustomState,
)

result = agent.invoke({
    "messages": "look up user information",
    "user_id": "user_123"
})
print(result["messages"][-1].content)
# > User is John Smith.

从工具中写入短期记忆

要在执行期间修改代理的短期记忆(状态),你可以直接从工具返回状态更新。 这对于持久化中间结果或使信息可供后续工具或提示访问很有用。
from langchain.tools import tool, ToolRuntime
from langchain_core.runnables import RunnableConfig
from langchain.messages import ToolMessage
from langchain.agents import create_agent, AgentState
from langgraph.types import Command
from pydantic import BaseModel


class CustomState(AgentState):  
    user_name: str

class CustomContext(BaseModel):
    user_id: str

@tool
def update_user_info(
    runtime: ToolRuntime[CustomContext, CustomState],
) -> Command:
    """Look up and update user info."""
    user_id = runtime.context.user_id  
    name = "John Smith" if user_id == "user_123" else "Unknown user"
    return Command(update={
        "user_name": name,
        # update the message history
        "messages": [
            ToolMessage(
                "Successfully looked up user information",
                tool_call_id=runtime.tool_call_id
            )
        ]
    })

@tool
def greet(
    runtime: ToolRuntime[CustomContext, CustomState]
) -> str:
    """Use this to greet the user once you found their info."""
    user_name = runtime.state["user_name"]
    return f"Hello {user_name}!"
agent = create_agent(
    model="gpt-5-nano",
    tools=[update_user_info, greet],
    state_schema=CustomState,
    context_schema=CustomContext,  
)

agent.invoke(
    {"messages": [{"role": "user", "content": "greet the user"}]},
    context=CustomContext(user_id="user_123"),
)

提示

在中间件中访问短期记忆(状态),以根据对话历史或自定义状态字段创建动态提示。
from langchain.agents import create_agent
from typing import TypedDict
from langchain.agents.middleware import dynamic_prompt, ModelRequest


class CustomContext(TypedDict):
    user_name: str


def get_weather(city: str) -> str:
    """Get the weather in a city."""
    return f"The weather in {city} is always sunny!"


@dynamic_prompt
def dynamic_system_prompt(request: ModelRequest) -> str:
    user_name = request.runtime.context["user_name"]
    system_prompt = f"You are a helpful assistant. Address the user as {user_name}."
    return system_prompt


agent = create_agent(
    model="gpt-5-nano",
    tools=[get_weather],
    middleware=[dynamic_system_prompt],
    context_schema=CustomContext,
)

result = agent.invoke(
    {"messages": [{"role": "user", "content": "What is the weather in SF?"}]},
    context=CustomContext(user_name="John Smith"),
)
for msg in result["messages"]:
    msg.pretty_print()

输出
================================ Human Message =================================

What is the weather in SF?
================================== Ai Message ==================================
Tool Calls:
  get_weather (call_WFQlOGn4b2yoJrv7cih342FG)
 Call ID: call_WFQlOGn4b2yoJrv7cih342FG
  Args:
    city: San Francisco
================================= Tool Message =================================
Name: get_weather

The weather in San Francisco is always sunny!
================================== Ai Message ==================================

Hi John Smith, the weather in San Francisco is always sunny!

模型前

@before_model中间件中访问短期记忆(状态),以在模型调用之前处理消息。
from langchain.messages import RemoveMessage
from langgraph.graph.message import REMOVE_ALL_MESSAGES
from langgraph.checkpoint.memory import InMemorySaver
from langchain.agents import create_agent, AgentState
from langchain.agents.middleware import before_model
from langgraph.runtime import Runtime
from typing import Any


@before_model
def trim_messages(state: AgentState, runtime: Runtime) -> dict[str, Any] | None:
    """Keep only the last few messages to fit context window."""
    messages = state["messages"]

    if len(messages) <= 3:
        return None  # No changes needed

    first_msg = messages[0]
    recent_messages = messages[-3:] if len(messages) % 2 == 0 else messages[-4:]
    new_messages = [first_msg] + recent_messages

    return {
        "messages": [
            RemoveMessage(id=REMOVE_ALL_MESSAGES),
            *new_messages
        ]
    }

agent = create_agent(
    model,
    tools=tools,
    middleware=[trim_messages]
)

config: RunnableConfig = {"configurable": {"thread_id": "1"}}

agent.invoke({"messages": "hi, my name is bob"}, config)
agent.invoke({"messages": "write a short poem about cats"}, config)
agent.invoke({"messages": "now do the same but for dogs"}, config)
final_response = agent.invoke({"messages": "what's my name?"}, config)

final_response["messages"][-1].pretty_print()
"""
================================== Ai Message ==================================

Your name is Bob. You told me that earlier.
If you'd like me to call you a nickname or use a different name, just say the word.
"""

模型后

@after_model中间件中访问短期记忆(状态),以在模型调用之后处理消息。
from langchain.messages import RemoveMessage
from langgraph.checkpoint.memory import InMemorySaver
from langchain.agents import create_agent, AgentState
from langchain.agents.middleware import after_model
from langgraph.runtime import Runtime


@after_model
def validate_response(state: AgentState, runtime: Runtime) -> dict | None:
    """Remove messages containing sensitive words."""
    STOP_WORDS = ["password", "secret"]
    last_message = state["messages"][-1]
    if any(word in last_message.content for word in STOP_WORDS):
        return {"messages": [RemoveMessage(id=last_message.id)]}
    return None

agent = create_agent(
    model="gpt-5-nano",
    tools=[],
    middleware=[validate_response],
    checkpointer=InMemorySaver(),
)

以编程方式连接这些文档到 Claude、VSCode 等,通过 MCP 获取实时答案。
© . This site is unofficial and not affiliated with LangChain, Inc.