跳到主要内容
AI 应用程序需要内存才能在多次交互中共享上下文。在 LangGraph 中,你可以添加两种类型的内存

添加短期记忆

短期记忆(线程级别持久性)使代理能够跟踪多轮对话。要添加短期记忆
import { MemorySaver, StateGraph } from "@langchain/langgraph";

const checkpointer = new MemorySaver();

const builder = new StateGraph(...);
const graph = builder.compile({ checkpointer });

await graph.invoke(
  { messages: [{ role: "user", content: "hi! i am Bob" }] },
  { configurable: { thread_id: "1" } }
);

生产环境中使用

在生产中,使用由数据库支持的检查点器
import { PostgresSaver } from "@langchain/langgraph-checkpoint-postgres";

const DB_URI = "postgresql://postgres:postgres@localhost:5442/postgres?sslmode=disable";
const checkpointer = PostgresSaver.fromConnString(DB_URI);

const builder = new StateGraph(...);
const graph = builder.compile({ checkpointer });
npm install @langchain/langgraph-checkpoint-postgres
首次使用 Postgres 检查点时,你需要调用 checkpointer.setup()
import { ChatAnthropic } from "@langchain/anthropic";
import { StateGraph, MessagesZodMeta, START } from "@langchain/langgraph";
import { BaseMessage } from "@langchain/core/messages";
import { registry } from "@langchain/langgraph/zod";
import * as z from "zod";
import { PostgresSaver } from "@langchain/langgraph-checkpoint-postgres";

const MessagesZodState = z.object({
  messages: z
    .array(z.custom<BaseMessage>())
    .register(registry, MessagesZodMeta),
});

const model = new ChatAnthropic({ model: "claude-haiku-4-5-20251001" });

const DB_URI = "postgresql://postgres:postgres@localhost:5442/postgres?sslmode=disable";
const checkpointer = PostgresSaver.fromConnString(DB_URI);
// await checkpointer.setup();

const builder = new StateGraph(MessagesZodState)
  .addNode("call_model", async (state) => {
    const response = await model.invoke(state.messages);
    return { messages: [response] };
  })
  .addEdge(START, "call_model");

const graph = builder.compile({ checkpointer });

const config = {
  configurable: {
    thread_id: "1"
  }
};

for await (const chunk of await graph.stream(
  { messages: [{ role: "user", content: "hi! I'm bob" }] },
  { ...config, streamMode: "values" }
)) {
  console.log(chunk.messages.at(-1)?.content);
}

for await (const chunk of await graph.stream(
  { messages: [{ role: "user", content: "what's my name?" }] },
  { ...config, streamMode: "values" }
)) {
  console.log(chunk.messages.at(-1)?.content);
}

在子图中使用

如果你的图包含子图,你只需在编译父图时提供检查点。LangGraph 将自动将检查点传播到子子图。
import { StateGraph, START, MemorySaver } from "@langchain/langgraph";
import * as z from "zod";

const State = z.object({ foo: z.string() });

const subgraphBuilder = new StateGraph(State)
  .addNode("subgraph_node_1", (state) => {
    return { foo: state.foo + "bar" };
  })
  .addEdge(START, "subgraph_node_1");
const subgraph = subgraphBuilder.compile();

const builder = new StateGraph(State)
  .addNode("node_1", subgraph)
  .addEdge(START, "node_1");

const checkpointer = new MemorySaver();
const graph = builder.compile({ checkpointer });
如果你希望子图拥有自己的内存,你可以使用适当的检查点选项编译它。这在多智能体系统中很有用,如果你希望智能体跟踪其内部消息历史记录。
const subgraphBuilder = new StateGraph(...);
const subgraph = subgraphBuilder.compile({ checkpointer: true });  

添加长期记忆

使用长期记忆来跨对话存储用户特定或应用程序特定的数据。
import { InMemoryStore, StateGraph } from "@langchain/langgraph";

const store = new InMemoryStore();

const builder = new StateGraph(...);
const graph = builder.compile({ store });

生产环境中使用

在生产环境中,使用数据库支持的存储
import { PostgresStore } from "@langchain/langgraph-checkpoint-postgres/store";

const DB_URI = "postgresql://postgres:postgres@localhost:5442/postgres?sslmode=disable";
const store = PostgresStore.fromConnString(DB_URI);

const builder = new StateGraph(...);
const graph = builder.compile({ store });
npm install @langchain/langgraph-checkpoint-postgres
首次使用 Postgres 存储时,你需要调用 store.setup()
import { ChatAnthropic } from "@langchain/anthropic";
import { StateGraph, MessagesZodMeta, START, LangGraphRunnableConfig } from "@langchain/langgraph";
import { PostgresSaver } from "@langchain/langgraph-checkpoint-postgres";
import { PostgresStore } from "@langchain/langgraph-checkpoint-postgres/store";
import { BaseMessage } from "@langchain/core/messages";
import { registry } from "@langchain/langgraph/zod";
import * as z from "zod";
import { v4 as uuidv4 } from "uuid";

const MessagesZodState = z.object({
  messages: z
    .array(z.custom<BaseMessage>())
    .register(registry, MessagesZodMeta),
});

const model = new ChatAnthropic({ model: "claude-haiku-4-5-20251001" });

const DB_URI = "postgresql://postgres:postgres@localhost:5442/postgres?sslmode=disable";

const store = PostgresStore.fromConnString(DB_URI);
const checkpointer = PostgresSaver.fromConnString(DB_URI);
// await store.setup();
// await checkpointer.setup();

const callModel = async (
  state: z.infer<typeof MessagesZodState>,
  config: LangGraphRunnableConfig,
) => {
  const userId = config.configurable?.userId;
  const namespace = ["memories", userId];
  const memories = await config.store?.search(namespace, { query: state.messages.at(-1)?.content });
  const info = memories?.map(d => d.value.data).join("\n") || "";
  const systemMsg = `You are a helpful assistant talking to the user. User info: ${info}`;

  // Store new memories if the user asks the model to remember
  const lastMessage = state.messages.at(-1);
  if (lastMessage?.content?.toLowerCase().includes("remember")) {
    const memory = "User name is Bob";
    await config.store?.put(namespace, uuidv4(), { data: memory });
  }

  const response = await model.invoke([
    { role: "system", content: systemMsg },
    ...state.messages
  ]);
  return { messages: [response] };
};

const builder = new StateGraph(MessagesZodState)
  .addNode("call_model", callModel)
  .addEdge(START, "call_model");

const graph = builder.compile({
  checkpointer,
  store,
});

const config = {
  configurable: {
    thread_id: "1",
    userId: "1",
  }
};

for await (const chunk of await graph.stream(
  { messages: [{ role: "user", content: "Hi! Remember: my name is Bob" }] },
  { ...config, streamMode: "values" }
)) {
  console.log(chunk.messages.at(-1)?.content);
}

const config2 = {
  configurable: {
    thread_id: "2",
    userId: "1",
  }
};

for await (const chunk of await graph.stream(
  { messages: [{ role: "user", content: "what is my name?" }] },
  { ...config2, streamMode: "values" }
)) {
  console.log(chunk.messages.at(-1)?.content);
}
在你的图的内存存储中启用语义搜索,让图代理通过语义相似性搜索存储中的项目。
import { OpenAIEmbeddings } from "@langchain/openai";
import { InMemoryStore } from "@langchain/langgraph";

// Create store with semantic search enabled
const embeddings = new OpenAIEmbeddings({ model: "text-embedding-3-small" });
const store = new InMemoryStore({
  index: {
    embeddings,
    dims: 1536,
  },
});

await store.put(["user_123", "memories"], "1", { text: "I love pizza" });
await store.put(["user_123", "memories"], "2", { text: "I am a plumber" });

const items = await store.search(["user_123", "memories"], {
  query: "I'm hungry",
  limit: 1,
});

管理短期记忆

启用短期记忆后,长对话可能会超出 LLM 的上下文窗口。常见的解决方案有: 这使得代理可以跟踪对话,而不会超出 LLM 的上下文窗口。

截断消息

大多数 LLM 都有一个最大支持的上下文窗口(以 token 计)。决定何时截断消息的一种方法是计算消息历史记录中的 token 数量,并在接近该限制时截断。如果你正在使用 LangChain,你可以使用修剪消息实用程序并指定要保留的 token 数量,以及用于处理边界的 strategy(例如,保留最后 maxTokens)。 要修剪消息历史记录,请使用 trimMessages 函数:
import { trimMessages } from "@langchain/core/messages";

const callModel = async (state: z.infer<typeof MessagesZodState>) => {
  const messages = trimMessages(state.messages, {
    strategy: "last",
    maxTokens: 128,
    startOn: "human",
    endOn: ["human", "tool"],
  });
  const response = await model.invoke(messages);
  return { messages: [response] };
};

const builder = new StateGraph(MessagesZodState)
  .addNode("call_model", callModel);
// ...
import { trimMessages, BaseMessage } from "@langchain/core/messages";
import { ChatAnthropic } from "@langchain/anthropic";
import { StateGraph, START, MessagesZodMeta, MemorySaver } from "@langchain/langgraph";
import { registry } from "@langchain/langgraph/zod";
import * as z from "zod";

const MessagesZodState = z.object({
  messages: z
    .array(z.custom<BaseMessage>())
    .register(registry, MessagesZodMeta),
});

const model = new ChatAnthropic({ model: "claude-3-5-sonnet-20241022" });

const callModel = async (state: z.infer<typeof MessagesZodState>) => {
  const messages = trimMessages(state.messages, {
    strategy: "last",
    maxTokens: 128,
    startOn: "human",
    endOn: ["human", "tool"],
    tokenCounter: model,
  });
  const response = await model.invoke(messages);
  return { messages: [response] };
};

const checkpointer = new MemorySaver();
const builder = new StateGraph(MessagesZodState)
  .addNode("call_model", callModel)
  .addEdge(START, "call_model");
const graph = builder.compile({ checkpointer });

const config = { configurable: { thread_id: "1" } };
await graph.invoke({ messages: [{ role: "user", content: "hi, my name is bob" }] }, config);
await graph.invoke({ messages: [{ role: "user", content: "write a short poem about cats" }] }, config);
await graph.invoke({ messages: [{ role: "user", content: "now do the same but for dogs" }] }, config);
const finalResponse = await graph.invoke({ messages: [{ role: "user", content: "what's my name?" }] }, config);

console.log(finalResponse.messages.at(-1)?.content);
Your name is Bob, as you mentioned when you first introduced yourself.

删除消息

你可以从图状态中删除消息以管理消息历史记录。当你想要删除特定消息或清除整个消息历史记录时,这很有用。 要从图状态中删除消息,你可以使用 RemoveMessage。为了使 RemoveMessage 工作,你需要使用带有 messagesStateReducer reducer 的状态键,例如 MessagesZodState 要删除特定消息:
import { RemoveMessage } from "@langchain/core/messages";

const deleteMessages = (state) => {
  const messages = state.messages;
  if (messages.length > 2) {
    // remove the earliest two messages
    return {
      messages: messages
        .slice(0, 2)
        .map((m) => new RemoveMessage({ id: m.id })),
    };
  }
};
删除消息时,请确保生成的消息历史有效。检查你正在使用的 LLM 提供商的限制。例如:
  • 一些提供商期望消息历史记录以 user 消息开头
  • 大多数提供商要求带有工具调用的 assistant 消息后跟相应的 tool 结果消息。
import { RemoveMessage, BaseMessage } from "@langchain/core/messages";
import { ChatAnthropic } from "@langchain/anthropic";
import { StateGraph, START, MemorySaver, MessagesZodMeta } from "@langchain/langgraph";
import * as z from "zod";
import { registry } from "@langchain/langgraph/zod";

const MessagesZodState = z.object({
  messages: z
    .array(z.custom<BaseMessage>())
    .register(registry, MessagesZodMeta),
});

const model = new ChatAnthropic({ model: "claude-3-5-sonnet-20241022" });

const deleteMessages = (state: z.infer<typeof MessagesZodState>) => {
  const messages = state.messages;
  if (messages.length > 2) {
    // remove the earliest two messages
    return { messages: messages.slice(0, 2).map(m => new RemoveMessage({ id: m.id })) };
  }
  return {};
};

const callModel = async (state: z.infer<typeof MessagesZodState>) => {
  const response = await model.invoke(state.messages);
  return { messages: [response] };
};

const builder = new StateGraph(MessagesZodState)
  .addNode("call_model", callModel)
  .addNode("delete_messages", deleteMessages)
  .addEdge(START, "call_model")
  .addEdge("call_model", "delete_messages");

const checkpointer = new MemorySaver();
const app = builder.compile({ checkpointer });

const config = { configurable: { thread_id: "1" } };

for await (const event of await app.stream(
  { messages: [{ role: "user", content: "hi! I'm bob" }] },
  { ...config, streamMode: "values" }
)) {
  console.log(event.messages.map(message => [message.getType(), message.content]));
}

for await (const event of await app.stream(
  { messages: [{ role: "user", content: "what's my name?" }] },
  { ...config, streamMode: "values" }
)) {
  console.log(event.messages.map(message => [message.getType(), message.content]));
}
[['human', "hi! I'm bob"]]
[['human', "hi! I'm bob"], ['ai', 'Hi Bob! How are you doing today? Is there anything I can help you with?']]
[['human', "hi! I'm bob"], ['ai', 'Hi Bob! How are you doing today? Is there anything I can help you with?'], ['human', "what's my name?"]]
[['human', "hi! I'm bob"], ['ai', 'Hi Bob! How are you doing today? Is there anything I can help you with?'], ['human', "what's my name?"], ['ai', 'Your name is Bob.']]
[['human', "what's my name?"], ['ai', 'Your name is Bob.']]

总结消息

如上所示,修剪或删除消息的问题在于,你可能会因为消息队列的清除而丢失信息。因此,一些应用程序受益于使用聊天模型总结消息历史记录的更复杂方法。 提示和编排逻辑可用于总结消息历史记录。例如,在 LangGraph 中,你可以在状态中包含一个 summary 键,以及 messages 键:
import { BaseMessage } from "@langchain/core/messages";
import { MessagesZodMeta } from "@langchain/langgraph";
import { registry } from "@langchain/langgraph/zod";
import * as z from "zod";

const State = z.object({
  messages: z
    .array(z.custom<BaseMessage>())
    .register(registry, MessagesZodMeta),
  summary: z.string().optional(),
});
然后,你可以生成聊天历史记录的摘要,使用任何现有摘要作为下一个摘要的上下文。此 summarizeConversation 节点可以在 messages 状态键中累积一定数量的消息后调用。
import { RemoveMessage, HumanMessage } from "@langchain/core/messages";

const summarizeConversation = async (state: z.infer<typeof State>) => {
  // First, we get any existing summary
  const summary = state.summary || "";

  // Create our summarization prompt
  let summaryMessage: string;
  if (summary) {
    // A summary already exists
    summaryMessage =
      `This is a summary of the conversation to date: ${summary}\n\n` +
      "Extend the summary by taking into account the new messages above:";
  } else {
    summaryMessage = "Create a summary of the conversation above:";
  }

  // Add prompt to our history
  const messages = [
    ...state.messages,
    new HumanMessage({ content: summaryMessage })
  ];
  const response = await model.invoke(messages);

  // Delete all but the 2 most recent messages
  const deleteMessages = state.messages
    .slice(0, -2)
    .map(m => new RemoveMessage({ id: m.id }));

  return {
    summary: response.content,
    messages: deleteMessages
  };
};
import { ChatAnthropic } from "@langchain/anthropic";
import {
  SystemMessage,
  HumanMessage,
  RemoveMessage,
  type BaseMessage
} from "@langchain/core/messages";
import {
  MessagesZodMeta,
  StateGraph,
  START,
  END,
  MemorySaver,
} from "@langchain/langgraph";
import { BaseMessage } from "@langchain/core/messages";
import { registry } from "@langchain/langgraph/zod";
import * as z from "zod";
import { v4 as uuidv4 } from "uuid";

const memory = new MemorySaver();

// We will add a `summary` attribute (in addition to `messages` key,
// which MessagesZodState already has)
const GraphState = z.object({
  messages: z
    .array(z.custom<BaseMessage>())
    .register(registry, MessagesZodMeta),
  summary: z.string().default(""),
});

// We will use this model for both the conversation and the summarization
const model = new ChatAnthropic({ model: "claude-haiku-4-5-20251001" });

// Define the logic to call the model
const callModel = async (state: z.infer<typeof GraphState>) => {
  // If a summary exists, we add this in as a system message
  const { summary } = state;
  let { messages } = state;
  if (summary) {
    const systemMessage = new SystemMessage({
      id: uuidv4(),
      content: `Summary of conversation earlier: ${summary}`,
    });
    messages = [systemMessage, ...messages];
  }
  const response = await model.invoke(messages);
  // We return an object, because this will get added to the existing state
  return { messages: [response] };
};

// We now define the logic for determining whether to end or summarize the conversation
const shouldContinue = (state: z.infer<typeof GraphState>) => {
  const messages = state.messages;
  // If there are more than six messages, then we summarize the conversation
  if (messages.length > 6) {
    return "summarize_conversation";
  }
  // Otherwise we can just end
  return END;
};

const summarizeConversation = async (state: z.infer<typeof GraphState>) => {
  // First, we summarize the conversation
  const { summary, messages } = state;
  let summaryMessage: string;
  if (summary) {
    // If a summary already exists, we use a different system prompt
    // to summarize it than if one didn't
    summaryMessage =
      `This is summary of the conversation to date: ${summary}\n\n` +
      "Extend the summary by taking into account the new messages above:";
  } else {
    summaryMessage = "Create a summary of the conversation above:";
  }

  const allMessages = [
    ...messages,
    new HumanMessage({ id: uuidv4(), content: summaryMessage }),
  ];

  const response = await model.invoke(allMessages);

  // We now need to delete messages that we no longer want to show up
  // I will delete all but the last two messages, but you can change this
  const deleteMessages = messages
    .slice(0, -2)
    .map((m) => new RemoveMessage({ id: m.id! }));

  if (typeof response.content !== "string") {
    throw new Error("Expected a string response from the model");
  }

  return { summary: response.content, messages: deleteMessages };
};

// Define a new graph
const workflow = new StateGraph(GraphState)
  // Define the conversation node and the summarize node
  .addNode("conversation", callModel)
  .addNode("summarize_conversation", summarizeConversation)
  // Set the entrypoint as conversation
  .addEdge(START, "conversation")
  // We now add a conditional edge
  .addConditionalEdges(
    // First, we define the start node. We use `conversation`.
    // This means these are the edges taken after the `conversation` node is called.
    "conversation",
    // Next, we pass in the function that will determine which node is called next.
    shouldContinue,
  )
  // We now add a normal edge from `summarize_conversation` to END.
  // This means that after `summarize_conversation` is called, we end.
  .addEdge("summarize_conversation", END);

// Finally, we compile it!
const app = workflow.compile({ checkpointer: memory });

管理检查点

你可以查看和删除检查点存储的信息。

查看线程状态

const config = {
  configurable: {
    thread_id: "1",
    // optionally provide an ID for a specific checkpoint,
    // otherwise the latest checkpoint is shown
    // checkpoint_id: "1f029ca3-1f5b-6704-8004-820c16b69a5a"
  },
};
await graph.getState(config);
{
  values: { messages: [HumanMessage(...), AIMessage(...), HumanMessage(...), AIMessage(...)] },
  next: [],
  config: { configurable: { thread_id: '1', checkpoint_ns: '', checkpoint_id: '1f029ca3-1f5b-6704-8004-820c16b69a5a' } },
  metadata: {
    source: 'loop',
    writes: { call_model: { messages: AIMessage(...) } },
    step: 4,
    parents: {},
    thread_id: '1'
  },
  createdAt: '2025-05-05T16:01:24.680462+00:00',
  parentConfig: { configurable: { thread_id: '1', checkpoint_ns: '', checkpoint_id: '1f029ca3-1790-6b0a-8003-baf965b6a38f' } },
  tasks: [],
  interrupts: []
}

查看线程历史

const config = {
  configurable: {
    thread_id: "1",
  },
};

const history = [];
for await (const state of graph.getStateHistory(config)) {
  history.push(state);
}

删除线程的所有检查点

const threadId = "1";
await checkpointer.deleteThread(threadId);

以编程方式连接这些文档到 Claude、VSCode 等,通过 MCP 获取实时答案。
© . This site is unofficial and not affiliated with LangChain, Inc.