添加短期记忆
短期记忆(线程级别持久性)使代理能够跟踪多轮对话。要添加短期记忆复制
向 AI 提问
import { MemorySaver, StateGraph } from "@langchain/langgraph";
const checkpointer = new MemorySaver();
const builder = new StateGraph(...);
const graph = builder.compile({ checkpointer });
await graph.invoke(
{ messages: [{ role: "user", content: "hi! i am Bob" }] },
{ configurable: { thread_id: "1" } }
);
生产环境中使用
在生产中,使用由数据库支持的检查点器复制
向 AI 提问
import { PostgresSaver } from "@langchain/langgraph-checkpoint-postgres";
const DB_URI = "postgresql://postgres:postgres@localhost:5442/postgres?sslmode=disable";
const checkpointer = PostgresSaver.fromConnString(DB_URI);
const builder = new StateGraph(...);
const graph = builder.compile({ checkpointer });
示例:使用 Postgres 检查点
示例:使用 Postgres 检查点
复制
向 AI 提问
npm install @langchain/langgraph-checkpoint-postgres
首次使用 Postgres 检查点时,你需要调用
checkpointer.setup()复制
向 AI 提问
import { ChatAnthropic } from "@langchain/anthropic";
import { StateGraph, MessagesZodMeta, START } from "@langchain/langgraph";
import { BaseMessage } from "@langchain/core/messages";
import { registry } from "@langchain/langgraph/zod";
import * as z from "zod";
import { PostgresSaver } from "@langchain/langgraph-checkpoint-postgres";
const MessagesZodState = z.object({
messages: z
.array(z.custom<BaseMessage>())
.register(registry, MessagesZodMeta),
});
const model = new ChatAnthropic({ model: "claude-haiku-4-5-20251001" });
const DB_URI = "postgresql://postgres:postgres@localhost:5442/postgres?sslmode=disable";
const checkpointer = PostgresSaver.fromConnString(DB_URI);
// await checkpointer.setup();
const builder = new StateGraph(MessagesZodState)
.addNode("call_model", async (state) => {
const response = await model.invoke(state.messages);
return { messages: [response] };
})
.addEdge(START, "call_model");
const graph = builder.compile({ checkpointer });
const config = {
configurable: {
thread_id: "1"
}
};
for await (const chunk of await graph.stream(
{ messages: [{ role: "user", content: "hi! I'm bob" }] },
{ ...config, streamMode: "values" }
)) {
console.log(chunk.messages.at(-1)?.content);
}
for await (const chunk of await graph.stream(
{ messages: [{ role: "user", content: "what's my name?" }] },
{ ...config, streamMode: "values" }
)) {
console.log(chunk.messages.at(-1)?.content);
}
在子图中使用
如果你的图包含子图,你只需在编译父图时提供检查点。LangGraph 将自动将检查点传播到子子图。复制
向 AI 提问
import { StateGraph, START, MemorySaver } from "@langchain/langgraph";
import * as z from "zod";
const State = z.object({ foo: z.string() });
const subgraphBuilder = new StateGraph(State)
.addNode("subgraph_node_1", (state) => {
return { foo: state.foo + "bar" };
})
.addEdge(START, "subgraph_node_1");
const subgraph = subgraphBuilder.compile();
const builder = new StateGraph(State)
.addNode("node_1", subgraph)
.addEdge(START, "node_1");
const checkpointer = new MemorySaver();
const graph = builder.compile({ checkpointer });
复制
向 AI 提问
const subgraphBuilder = new StateGraph(...);
const subgraph = subgraphBuilder.compile({ checkpointer: true });
添加长期记忆
使用长期记忆来跨对话存储用户特定或应用程序特定的数据。复制
向 AI 提问
import { InMemoryStore, StateGraph } from "@langchain/langgraph";
const store = new InMemoryStore();
const builder = new StateGraph(...);
const graph = builder.compile({ store });
生产环境中使用
在生产环境中,使用数据库支持的存储复制
向 AI 提问
import { PostgresStore } from "@langchain/langgraph-checkpoint-postgres/store";
const DB_URI = "postgresql://postgres:postgres@localhost:5442/postgres?sslmode=disable";
const store = PostgresStore.fromConnString(DB_URI);
const builder = new StateGraph(...);
const graph = builder.compile({ store });
示例:使用 Postgres 存储
示例:使用 Postgres 存储
复制
向 AI 提问
npm install @langchain/langgraph-checkpoint-postgres
首次使用 Postgres 存储时,你需要调用
store.setup()复制
向 AI 提问
import { ChatAnthropic } from "@langchain/anthropic";
import { StateGraph, MessagesZodMeta, START, LangGraphRunnableConfig } from "@langchain/langgraph";
import { PostgresSaver } from "@langchain/langgraph-checkpoint-postgres";
import { PostgresStore } from "@langchain/langgraph-checkpoint-postgres/store";
import { BaseMessage } from "@langchain/core/messages";
import { registry } from "@langchain/langgraph/zod";
import * as z from "zod";
import { v4 as uuidv4 } from "uuid";
const MessagesZodState = z.object({
messages: z
.array(z.custom<BaseMessage>())
.register(registry, MessagesZodMeta),
});
const model = new ChatAnthropic({ model: "claude-haiku-4-5-20251001" });
const DB_URI = "postgresql://postgres:postgres@localhost:5442/postgres?sslmode=disable";
const store = PostgresStore.fromConnString(DB_URI);
const checkpointer = PostgresSaver.fromConnString(DB_URI);
// await store.setup();
// await checkpointer.setup();
const callModel = async (
state: z.infer<typeof MessagesZodState>,
config: LangGraphRunnableConfig,
) => {
const userId = config.configurable?.userId;
const namespace = ["memories", userId];
const memories = await config.store?.search(namespace, { query: state.messages.at(-1)?.content });
const info = memories?.map(d => d.value.data).join("\n") || "";
const systemMsg = `You are a helpful assistant talking to the user. User info: ${info}`;
// Store new memories if the user asks the model to remember
const lastMessage = state.messages.at(-1);
if (lastMessage?.content?.toLowerCase().includes("remember")) {
const memory = "User name is Bob";
await config.store?.put(namespace, uuidv4(), { data: memory });
}
const response = await model.invoke([
{ role: "system", content: systemMsg },
...state.messages
]);
return { messages: [response] };
};
const builder = new StateGraph(MessagesZodState)
.addNode("call_model", callModel)
.addEdge(START, "call_model");
const graph = builder.compile({
checkpointer,
store,
});
const config = {
configurable: {
thread_id: "1",
userId: "1",
}
};
for await (const chunk of await graph.stream(
{ messages: [{ role: "user", content: "Hi! Remember: my name is Bob" }] },
{ ...config, streamMode: "values" }
)) {
console.log(chunk.messages.at(-1)?.content);
}
const config2 = {
configurable: {
thread_id: "2",
userId: "1",
}
};
for await (const chunk of await graph.stream(
{ messages: [{ role: "user", content: "what is my name?" }] },
{ ...config2, streamMode: "values" }
)) {
console.log(chunk.messages.at(-1)?.content);
}
使用语义搜索
在你的图的内存存储中启用语义搜索,让图代理通过语义相似性搜索存储中的项目。复制
向 AI 提问
import { OpenAIEmbeddings } from "@langchain/openai";
import { InMemoryStore } from "@langchain/langgraph";
// Create store with semantic search enabled
const embeddings = new OpenAIEmbeddings({ model: "text-embedding-3-small" });
const store = new InMemoryStore({
index: {
embeddings,
dims: 1536,
},
});
await store.put(["user_123", "memories"], "1", { text: "I love pizza" });
await store.put(["user_123", "memories"], "2", { text: "I am a plumber" });
const items = await store.search(["user_123", "memories"], {
query: "I'm hungry",
limit: 1,
});
具有语义搜索的长期记忆
具有语义搜索的长期记忆
复制
向 AI 提问
import { OpenAIEmbeddings, ChatOpenAI } from "@langchain/openai";
import { StateGraph, START, MessagesZodMeta, InMemoryStore } from "@langchain/langgraph";
import { BaseMessage } from "@langchain/core/messages";
import { registry } from "@langchain/langgraph/zod";
import * as z from "zod";
const MessagesZodState = z.object({
messages: z
.array(z.custom<BaseMessage>())
.register(registry, MessagesZodMeta),
});
const model = new ChatOpenAI({ model: "gpt-4o-mini" });
// Create store with semantic search enabled
const embeddings = new OpenAIEmbeddings({ model: "text-embedding-3-small" });
const store = new InMemoryStore({
index: {
embeddings,
dims: 1536,
}
});
await store.put(["user_123", "memories"], "1", { text: "I love pizza" });
await store.put(["user_123", "memories"], "2", { text: "I am a plumber" });
const chat = async (state: z.infer<typeof MessagesZodState>, config) => {
// Search based on user's last message
const items = await config.store.search(
["user_123", "memories"],
{ query: state.messages.at(-1)?.content, limit: 2 }
);
const memories = items.map(item => item.value.text).join("\n");
const memoriesText = memories ? `## Memories of user\n${memories}` : "";
const response = await model.invoke([
{ role: "system", content: `You are a helpful assistant.\n${memoriesText}` },
...state.messages,
]);
return { messages: [response] };
};
const builder = new StateGraph(MessagesZodState)
.addNode("chat", chat)
.addEdge(START, "chat");
const graph = builder.compile({ store });
for await (const [message, metadata] of await graph.stream(
{ messages: [{ role: "user", content: "I'm hungry" }] },
{ streamMode: "messages" }
)) {
if (message.content) {
console.log(message.content);
}
}
管理短期记忆
启用短期记忆后,长对话可能会超出 LLM 的上下文窗口。常见的解决方案有:- 修剪消息:删除前 N 条或后 N 条消息(在调用 LLM 之前)
- 从 LangGraph 状态永久删除消息
- 总结消息:总结历史记录中较早的消息并用摘要替换它们
- 管理检查点以存储和检索消息历史记录
- 自定义策略(例如,消息过滤等)
截断消息
大多数 LLM 都有一个最大支持的上下文窗口(以 token 计)。决定何时截断消息的一种方法是计算消息历史记录中的 token 数量,并在接近该限制时截断。如果你正在使用 LangChain,你可以使用修剪消息实用程序并指定要保留的 token 数量,以及用于处理边界的strategy(例如,保留最后 maxTokens)。 要修剪消息历史记录,请使用 trimMessages 函数:复制
向 AI 提问
import { trimMessages } from "@langchain/core/messages";
const callModel = async (state: z.infer<typeof MessagesZodState>) => {
const messages = trimMessages(state.messages, {
strategy: "last",
maxTokens: 128,
startOn: "human",
endOn: ["human", "tool"],
});
const response = await model.invoke(messages);
return { messages: [response] };
};
const builder = new StateGraph(MessagesZodState)
.addNode("call_model", callModel);
// ...
完整示例:修剪消息
完整示例:修剪消息
复制
向 AI 提问
import { trimMessages, BaseMessage } from "@langchain/core/messages";
import { ChatAnthropic } from "@langchain/anthropic";
import { StateGraph, START, MessagesZodMeta, MemorySaver } from "@langchain/langgraph";
import { registry } from "@langchain/langgraph/zod";
import * as z from "zod";
const MessagesZodState = z.object({
messages: z
.array(z.custom<BaseMessage>())
.register(registry, MessagesZodMeta),
});
const model = new ChatAnthropic({ model: "claude-3-5-sonnet-20241022" });
const callModel = async (state: z.infer<typeof MessagesZodState>) => {
const messages = trimMessages(state.messages, {
strategy: "last",
maxTokens: 128,
startOn: "human",
endOn: ["human", "tool"],
tokenCounter: model,
});
const response = await model.invoke(messages);
return { messages: [response] };
};
const checkpointer = new MemorySaver();
const builder = new StateGraph(MessagesZodState)
.addNode("call_model", callModel)
.addEdge(START, "call_model");
const graph = builder.compile({ checkpointer });
const config = { configurable: { thread_id: "1" } };
await graph.invoke({ messages: [{ role: "user", content: "hi, my name is bob" }] }, config);
await graph.invoke({ messages: [{ role: "user", content: "write a short poem about cats" }] }, config);
await graph.invoke({ messages: [{ role: "user", content: "now do the same but for dogs" }] }, config);
const finalResponse = await graph.invoke({ messages: [{ role: "user", content: "what's my name?" }] }, config);
console.log(finalResponse.messages.at(-1)?.content);
复制
向 AI 提问
Your name is Bob, as you mentioned when you first introduced yourself.
删除消息
你可以从图状态中删除消息以管理消息历史记录。当你想要删除特定消息或清除整个消息历史记录时,这很有用。 要从图状态中删除消息,你可以使用RemoveMessage。为了使 RemoveMessage 工作,你需要使用带有 messagesStateReducer reducer 的状态键,例如 MessagesZodState。 要删除特定消息:复制
向 AI 提问
import { RemoveMessage } from "@langchain/core/messages";
const deleteMessages = (state) => {
const messages = state.messages;
if (messages.length > 2) {
// remove the earliest two messages
return {
messages: messages
.slice(0, 2)
.map((m) => new RemoveMessage({ id: m.id })),
};
}
};
删除消息时,请确保生成的消息历史有效。检查你正在使用的 LLM 提供商的限制。例如:
- 一些提供商期望消息历史记录以
user消息开头 - 大多数提供商要求带有工具调用的
assistant消息后跟相应的tool结果消息。
完整示例:删除消息
完整示例:删除消息
复制
向 AI 提问
import { RemoveMessage, BaseMessage } from "@langchain/core/messages";
import { ChatAnthropic } from "@langchain/anthropic";
import { StateGraph, START, MemorySaver, MessagesZodMeta } from "@langchain/langgraph";
import * as z from "zod";
import { registry } from "@langchain/langgraph/zod";
const MessagesZodState = z.object({
messages: z
.array(z.custom<BaseMessage>())
.register(registry, MessagesZodMeta),
});
const model = new ChatAnthropic({ model: "claude-3-5-sonnet-20241022" });
const deleteMessages = (state: z.infer<typeof MessagesZodState>) => {
const messages = state.messages;
if (messages.length > 2) {
// remove the earliest two messages
return { messages: messages.slice(0, 2).map(m => new RemoveMessage({ id: m.id })) };
}
return {};
};
const callModel = async (state: z.infer<typeof MessagesZodState>) => {
const response = await model.invoke(state.messages);
return { messages: [response] };
};
const builder = new StateGraph(MessagesZodState)
.addNode("call_model", callModel)
.addNode("delete_messages", deleteMessages)
.addEdge(START, "call_model")
.addEdge("call_model", "delete_messages");
const checkpointer = new MemorySaver();
const app = builder.compile({ checkpointer });
const config = { configurable: { thread_id: "1" } };
for await (const event of await app.stream(
{ messages: [{ role: "user", content: "hi! I'm bob" }] },
{ ...config, streamMode: "values" }
)) {
console.log(event.messages.map(message => [message.getType(), message.content]));
}
for await (const event of await app.stream(
{ messages: [{ role: "user", content: "what's my name?" }] },
{ ...config, streamMode: "values" }
)) {
console.log(event.messages.map(message => [message.getType(), message.content]));
}
复制
向 AI 提问
[['human', "hi! I'm bob"]]
[['human', "hi! I'm bob"], ['ai', 'Hi Bob! How are you doing today? Is there anything I can help you with?']]
[['human', "hi! I'm bob"], ['ai', 'Hi Bob! How are you doing today? Is there anything I can help you with?'], ['human', "what's my name?"]]
[['human', "hi! I'm bob"], ['ai', 'Hi Bob! How are you doing today? Is there anything I can help you with?'], ['human', "what's my name?"], ['ai', 'Your name is Bob.']]
[['human', "what's my name?"], ['ai', 'Your name is Bob.']]
总结消息
如上所示,修剪或删除消息的问题在于,你可能会因为消息队列的清除而丢失信息。因此,一些应用程序受益于使用聊天模型总结消息历史记录的更复杂方法。
summary 键,以及 messages 键:复制
向 AI 提问
import { BaseMessage } from "@langchain/core/messages";
import { MessagesZodMeta } from "@langchain/langgraph";
import { registry } from "@langchain/langgraph/zod";
import * as z from "zod";
const State = z.object({
messages: z
.array(z.custom<BaseMessage>())
.register(registry, MessagesZodMeta),
summary: z.string().optional(),
});
summarizeConversation 节点可以在 messages 状态键中累积一定数量的消息后调用。
复制
向 AI 提问
import { RemoveMessage, HumanMessage } from "@langchain/core/messages";
const summarizeConversation = async (state: z.infer<typeof State>) => {
// First, we get any existing summary
const summary = state.summary || "";
// Create our summarization prompt
let summaryMessage: string;
if (summary) {
// A summary already exists
summaryMessage =
`This is a summary of the conversation to date: ${summary}\n\n` +
"Extend the summary by taking into account the new messages above:";
} else {
summaryMessage = "Create a summary of the conversation above:";
}
// Add prompt to our history
const messages = [
...state.messages,
new HumanMessage({ content: summaryMessage })
];
const response = await model.invoke(messages);
// Delete all but the 2 most recent messages
const deleteMessages = state.messages
.slice(0, -2)
.map(m => new RemoveMessage({ id: m.id }));
return {
summary: response.content,
messages: deleteMessages
};
};
完整示例:总结消息
完整示例:总结消息
复制
向 AI 提问
import { ChatAnthropic } from "@langchain/anthropic";
import {
SystemMessage,
HumanMessage,
RemoveMessage,
type BaseMessage
} from "@langchain/core/messages";
import {
MessagesZodMeta,
StateGraph,
START,
END,
MemorySaver,
} from "@langchain/langgraph";
import { BaseMessage } from "@langchain/core/messages";
import { registry } from "@langchain/langgraph/zod";
import * as z from "zod";
import { v4 as uuidv4 } from "uuid";
const memory = new MemorySaver();
// We will add a `summary` attribute (in addition to `messages` key,
// which MessagesZodState already has)
const GraphState = z.object({
messages: z
.array(z.custom<BaseMessage>())
.register(registry, MessagesZodMeta),
summary: z.string().default(""),
});
// We will use this model for both the conversation and the summarization
const model = new ChatAnthropic({ model: "claude-haiku-4-5-20251001" });
// Define the logic to call the model
const callModel = async (state: z.infer<typeof GraphState>) => {
// If a summary exists, we add this in as a system message
const { summary } = state;
let { messages } = state;
if (summary) {
const systemMessage = new SystemMessage({
id: uuidv4(),
content: `Summary of conversation earlier: ${summary}`,
});
messages = [systemMessage, ...messages];
}
const response = await model.invoke(messages);
// We return an object, because this will get added to the existing state
return { messages: [response] };
};
// We now define the logic for determining whether to end or summarize the conversation
const shouldContinue = (state: z.infer<typeof GraphState>) => {
const messages = state.messages;
// If there are more than six messages, then we summarize the conversation
if (messages.length > 6) {
return "summarize_conversation";
}
// Otherwise we can just end
return END;
};
const summarizeConversation = async (state: z.infer<typeof GraphState>) => {
// First, we summarize the conversation
const { summary, messages } = state;
let summaryMessage: string;
if (summary) {
// If a summary already exists, we use a different system prompt
// to summarize it than if one didn't
summaryMessage =
`This is summary of the conversation to date: ${summary}\n\n` +
"Extend the summary by taking into account the new messages above:";
} else {
summaryMessage = "Create a summary of the conversation above:";
}
const allMessages = [
...messages,
new HumanMessage({ id: uuidv4(), content: summaryMessage }),
];
const response = await model.invoke(allMessages);
// We now need to delete messages that we no longer want to show up
// I will delete all but the last two messages, but you can change this
const deleteMessages = messages
.slice(0, -2)
.map((m) => new RemoveMessage({ id: m.id! }));
if (typeof response.content !== "string") {
throw new Error("Expected a string response from the model");
}
return { summary: response.content, messages: deleteMessages };
};
// Define a new graph
const workflow = new StateGraph(GraphState)
// Define the conversation node and the summarize node
.addNode("conversation", callModel)
.addNode("summarize_conversation", summarizeConversation)
// Set the entrypoint as conversation
.addEdge(START, "conversation")
// We now add a conditional edge
.addConditionalEdges(
// First, we define the start node. We use `conversation`.
// This means these are the edges taken after the `conversation` node is called.
"conversation",
// Next, we pass in the function that will determine which node is called next.
shouldContinue,
)
// We now add a normal edge from `summarize_conversation` to END.
// This means that after `summarize_conversation` is called, we end.
.addEdge("summarize_conversation", END);
// Finally, we compile it!
const app = workflow.compile({ checkpointer: memory });
管理检查点
你可以查看和删除检查点存储的信息。查看线程状态
复制
向 AI 提问
const config = {
configurable: {
thread_id: "1",
// optionally provide an ID for a specific checkpoint,
// otherwise the latest checkpoint is shown
// checkpoint_id: "1f029ca3-1f5b-6704-8004-820c16b69a5a"
},
};
await graph.getState(config);
复制
向 AI 提问
{
values: { messages: [HumanMessage(...), AIMessage(...), HumanMessage(...), AIMessage(...)] },
next: [],
config: { configurable: { thread_id: '1', checkpoint_ns: '', checkpoint_id: '1f029ca3-1f5b-6704-8004-820c16b69a5a' } },
metadata: {
source: 'loop',
writes: { call_model: { messages: AIMessage(...) } },
step: 4,
parents: {},
thread_id: '1'
},
createdAt: '2025-05-05T16:01:24.680462+00:00',
parentConfig: { configurable: { thread_id: '1', checkpoint_ns: '', checkpoint_id: '1f029ca3-1790-6b0a-8003-baf965b6a38f' } },
tasks: [],
interrupts: []
}
查看线程历史
复制
向 AI 提问
const config = {
configurable: {
thread_id: "1",
},
};
const history = [];
for await (const state of graph.getStateHistory(config)) {
history.push(state);
}
删除线程的所有检查点
复制
向 AI 提问
const threadId = "1";
await checkpointer.deleteThread(threadId);
以编程方式连接这些文档到 Claude、VSCode 等,通过 MCP 获取实时答案。