Argilla 是一个用于 LLM 的开源数据整理平台。通过 Argilla,每个人都可以利用人类和机器反馈,通过更快速的数据整理来构建强大的语言模型。我们为 MLOps 周期中的每个步骤提供支持,从数据标注到模型监控。
ArgillaCallbackHandler 跟踪 LLM 的输入和响应,以在 Argilla 中生成数据集。 跟踪 LLM 的输入和输出以生成用于未来微调的数据集非常有用。当您使用 LLM 为特定任务(如问答、摘要或翻译)生成数据时,这尤其有用。安装和设置
复制
向 AI 提问
pip install -qU langchain langchain-openai argilla
获取 API 凭证
要获取 Argilla API 凭据,请按照以下步骤操作- 前往您的 Argilla UI。
- 点击您的个人资料图片并前往“我的设置”。
- 然后复制 API 密钥。
复制
向 AI 提问
import os
os.environ["ARGILLA_API_URL"] = "..."
os.environ["ARGILLA_API_KEY"] = "..."
os.environ["OPENAI_API_KEY"] = "..."
Argilla 设置
要使用ArgillaCallbackHandler,我们需要在 Argilla 中创建一个新的 FeedbackDataset 来跟踪您的 LLM 实验。为此,请使用以下代码
复制
向 AI 提问
import argilla as rg
复制
向 AI 提问
from packaging.version import parse as parse_version
if parse_version(rg.__version__) < parse_version("1.8.0"):
raise RuntimeError(
"`FeedbackDataset` is only available in Argilla v1.8.0 or higher, please "
"upgrade `argilla` as `pip install argilla --upgrade`."
)
复制
向 AI 提问
dataset = rg.FeedbackDataset(
fields=[
rg.TextField(name="prompt"),
rg.TextField(name="response"),
],
questions=[
rg.RatingQuestion(
name="response-rating",
description="How would you rate the quality of the response?",
values=[1, 2, 3, 4, 5],
required=True,
),
rg.TextQuestion(
name="response-feedback",
description="What feedback do you have for the response?",
required=False,
),
],
guidelines="You're asked to rate the quality of the response and provide feedback.",
)
rg.init(
api_url=os.environ["ARGILLA_API_URL"],
api_key=os.environ["ARGILLA_API_KEY"],
)
dataset.push_to_argilla("langchain-dataset")
📌 注意:目前,仅支持提示-响应对作为FeedbackDataset.fields,因此ArgillaCallbackHandler将只跟踪提示(即 LLM 输入)和响应(即 LLM 输出)。
跟踪
要使用ArgillaCallbackHandler,您可以使用以下代码,或者复制以下部分中提供的其中一个示例。
复制
向 AI 提问
from langchain_community.callbacks.argilla_callback import ArgillaCallbackHandler
argilla_callback = ArgillaCallbackHandler(
dataset_name="langchain-dataset",
api_url=os.environ["ARGILLA_API_URL"],
api_key=os.environ["ARGILLA_API_KEY"],
)
场景 1:跟踪 LLM
首先,让我们只运行一个 LLM 几次,并在 Argilla 中捕获生成的提示-响应对。复制
向 AI 提问
from langchain_core.callbacks.stdout import StdOutCallbackHandler
from langchain_openai import OpenAI
argilla_callback = ArgillaCallbackHandler(
dataset_name="langchain-dataset",
api_url=os.environ["ARGILLA_API_URL"],
api_key=os.environ["ARGILLA_API_KEY"],
)
callbacks = [StdOutCallbackHandler(), argilla_callback]
llm = OpenAI(temperature=0.9, callbacks=callbacks)
llm.generate(["Tell me a joke", "Tell me a poem"] * 3)
复制
向 AI 提问
LLMResult(generations=[[Generation(text='\n\nQ: What did the fish say when he hit the wall? \nA: Dam.', generation_info={'finish_reason': 'stop', 'logprobs': None})], [Generation(text='\n\nThe Moon \n\nThe moon is high in the midnight sky,\nSparkling like a star above.\nThe night so peaceful, so serene,\nFilling up the air with love.\n\nEver changing and renewing,\nA never-ending light of grace.\nThe moon remains a constant view,\nA reminder of life’s gentle pace.\n\nThrough time and space it guides us on,\nA never-fading beacon of hope.\nThe moon shines down on us all,\nAs it continues to rise and elope.', generation_info={'finish_reason': 'stop', 'logprobs': None})], [Generation(text='\n\nQ. What did one magnet say to the other magnet?\nA. "I find you very attractive!"', generation_info={'finish_reason': 'stop', 'logprobs': None})], [Generation(text="\n\nThe world is charged with the grandeur of God.\nIt will flame out, like shining from shook foil;\nIt gathers to a greatness, like the ooze of oil\nCrushed. Why do men then now not reck his rod?\n\nGenerations have trod, have trod, have trod;\nAnd all is seared with trade; bleared, smeared with toil;\nAnd wears man's smudge and shares man's smell: the soil\nIs bare now, nor can foot feel, being shod.\n\nAnd for all this, nature is never spent;\nThere lives the dearest freshness deep down things;\nAnd though the last lights off the black West went\nOh, morning, at the brown brink eastward, springs —\n\nBecause the Holy Ghost over the bent\nWorld broods with warm breast and with ah! bright wings.\n\n~Gerard Manley Hopkins", generation_info={'finish_reason': 'stop', 'logprobs': None})], [Generation(text='\n\nQ: What did one ocean say to the other ocean?\nA: Nothing, they just waved.', generation_info={'finish_reason': 'stop', 'logprobs': None})], [Generation(text="\n\nA poem for you\n\nOn a field of green\n\nThe sky so blue\n\nA gentle breeze, the sun above\n\nA beautiful world, for us to love\n\nLife is a journey, full of surprise\n\nFull of joy and full of surprise\n\nBe brave and take small steps\n\nThe future will be revealed with depth\n\nIn the morning, when dawn arrives\n\nA fresh start, no reason to hide\n\nSomewhere down the road, there's a heart that beats\n\nBelieve in yourself, you'll always succeed.", generation_info={'finish_reason': 'stop', 'logprobs': None})]], llm_output={'token_usage': {'completion_tokens': 504, 'total_tokens': 528, 'prompt_tokens': 24}, 'model_name': 'text-davinci-003'})
场景 2:在链中跟踪 LLM
然后我们可以使用提示模板创建一个链,然后在 Argilla 中跟踪初始提示和最终响应。复制
向 AI 提问
from langchain.chains import LLMChain
from langchain_core.callbacks.stdout import StdOutCallbackHandler
from langchain_core.prompts import PromptTemplate
from langchain_openai import OpenAI
argilla_callback = ArgillaCallbackHandler(
dataset_name="langchain-dataset",
api_url=os.environ["ARGILLA_API_URL"],
api_key=os.environ["ARGILLA_API_KEY"],
)
callbacks = [StdOutCallbackHandler(), argilla_callback]
llm = OpenAI(temperature=0.9, callbacks=callbacks)
template = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title.
Title: {title}
Playwright: This is a synopsis for the above play:"""
prompt_template = PromptTemplate(input_variables=["title"], template=template)
synopsis_chain = LLMChain(llm=llm, prompt=prompt_template, callbacks=callbacks)
test_prompts = [{"title": "Documentary about Bigfoot in Paris"}]
synopsis_chain.apply(test_prompts)
复制
向 AI 提问
> Entering new LLMChain chain...
Prompt after formatting:
You are a playwright. Given the title of play, it is your job to write a synopsis for that title.
Title: Documentary about Bigfoot in Paris
Playwright: This is a synopsis for the above play:
> Finished chain.
复制
向 AI 提问
[{'text': "\n\nDocumentary about Bigfoot in Paris focuses on the story of a documentary filmmaker and their search for evidence of the legendary Bigfoot creature in the city of Paris. The play follows the filmmaker as they explore the city, meeting people from all walks of life who have had encounters with the mysterious creature. Through their conversations, the filmmaker unravels the story of Bigfoot and finds out the truth about the creature's presence in Paris. As the story progresses, the filmmaker learns more and more about the mysterious creature, as well as the different perspectives of the people living in the city, and what they think of the creature. In the end, the filmmaker's findings lead them to some surprising and heartwarming conclusions about the creature's existence and the importance it holds in the lives of the people in Paris."}]
场景 3:将代理与工具配合使用
最后,作为一个更高级的工作流,您可以创建一个使用一些工具的代理。这样ArgillaCallbackHandler 将跟踪输入和输出,但不跟踪中间步骤/想法,因此给定一个提示,我们记录原始提示和对该提示的最终响应。
请注意,对于此场景,我们将使用 Google 搜索 API (Serp API),因此您需要安装google-search-results(通过pip install google-search-results),并将 Serp API 密钥设置为os.environ["SERPAPI_API_KEY"] = "..."(您可以在 serpapi.com/dashboard 找到),否则以下示例将无法运行。
复制
向 AI 提问
from langchain.agents import AgentType, initialize_agent, load_tools
from langchain_core.callbacks.stdout import StdOutCallbackHandler
from langchain_openai import OpenAI
argilla_callback = ArgillaCallbackHandler(
dataset_name="langchain-dataset",
api_url=os.environ["ARGILLA_API_URL"],
api_key=os.environ["ARGILLA_API_KEY"],
)
callbacks = [StdOutCallbackHandler(), argilla_callback]
llm = OpenAI(temperature=0.9, callbacks=callbacks)
tools = load_tools(["serpapi"], llm=llm, callbacks=callbacks)
agent = initialize_agent(
tools,
llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
callbacks=callbacks,
)
agent.run("Who was the first president of the United States of America?")
复制
向 AI 提问
> Entering new AgentExecutor chain...
I need to answer a historical question
Action: Search
Action Input: "who was the first president of the United States of America"
Observation: George Washington
Thought: George Washington was the first president
Final Answer: George Washington was the first president of the United States of America.
> Finished chain.
复制
向 AI 提问
'George Washington was the first president of the United States of America.'
以编程方式连接这些文档到 Claude、VSCode 等,通过 MCP 获取实时答案。