跳到主要内容

概览

向量存储存储嵌入式数据并执行相似性搜索。

接口

LangChain 提供了一个统一的向量存储接口,允许您
  • add_documents - 将文档添加到存储。
  • delete - 按 ID 删除存储的文档。
  • similarity_search - 查询语义相似的文档。
这种抽象允许您在不同实现之间切换,而无需更改应用程序逻辑。

初始化

要初始化向量存储,请为其提供一个嵌入模型。
from langchain_core.vectorstores import InMemoryVectorStore
vector_store = InMemoryVectorStore(embedding=SomeEmbeddingModel())

添加文档

添加Document对象(包含page_content和可选的元数据),如下所示
vector_store.add_documents(documents=[doc1, doc2], ids=["id1", "id2"])

删除文档

通过指定 ID 删除
vector_store.delete(ids=["id1"])
使用similarity_search发出语义查询,该查询返回最接近的嵌入文档
similar_docs = vector_store.similarity_search("your query here")
许多向量存储支持以下参数
  • k — 返回结果的数量
  • filter — 基于元数据的条件过滤

相似性度量与索引

嵌入相似性可以使用以下方法计算
  • 余弦相似度
  • 欧几里得距离
  • 点积
高效搜索通常采用 HNSW(分层可导航小世界)等索引方法,但具体取决于向量存储。

元数据过滤

通过元数据(例如,来源、日期)进行过滤可以优化搜索结果
vector_store.similarity_search(
  "query",
  k=3,
  filter={"source": "tweets"}
)

热门集成

选择嵌入模型
pip install -qU langchain-openai
import getpass
import os

if not os.environ.get("OPENAI_API_KEY"):
  os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter API key for OpenAI: ")

from langchain_openai import OpenAIEmbeddings

embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
pip install -qU "langchain[azure]"
import getpass
import os

if not os.environ.get("AZURE_OPENAI_API_KEY"):
  os.environ["AZURE_OPENAI_API_KEY"] = getpass.getpass("Enter API key for Azure: ")

from langchain_openai import AzureOpenAIEmbeddings

embeddings = AzureOpenAIEmbeddings(
    azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"],
    azure_deployment=os.environ["AZURE_OPENAI_DEPLOYMENT_NAME"],
    openai_api_version=os.environ["AZURE_OPENAI_API_VERSION"],
)
pip install -qU langchain-google-genai
import getpass
import os

if not os.environ.get("GOOGLE_API_KEY"):
  os.environ["GOOGLE_API_KEY"] = getpass.getpass("Enter API key for Google Gemini: ")

from langchain_google_genai import GoogleGenerativeAIEmbeddings

embeddings = GoogleGenerativeAIEmbeddings(model="models/gemini-embedding-001")
pip install -qU langchain-google-vertexai
from langchain_google_vertexai import VertexAIEmbeddings

embeddings = VertexAIEmbeddings(model="text-embedding-005")
pip install -qU langchain-aws
from langchain_aws import BedrockEmbeddings

embeddings = BedrockEmbeddings(model_id="amazon.titan-embed-text-v2:0")
pip install -qU langchain-huggingface
from langchain_huggingface import HuggingFaceEmbeddings

embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
pip install -qU langchain-ollama
from langchain_ollama import OllamaEmbeddings

embeddings = OllamaEmbeddings(model="llama3")
pip install -qU langchain-cohere
import getpass
import os

if not os.environ.get("COHERE_API_KEY"):
  os.environ["COHERE_API_KEY"] = getpass.getpass("Enter API key for Cohere: ")

from langchain_cohere import CohereEmbeddings

embeddings = CohereEmbeddings(model="embed-english-v3.0")
pip install -qU langchain-mistralai
import getpass
import os

if not os.environ.get("MISTRALAI_API_KEY"):
  os.environ["MISTRALAI_API_KEY"] = getpass.getpass("Enter API key for MistralAI: ")

from langchain_mistralai import MistralAIEmbeddings

embeddings = MistralAIEmbeddings(model="mistral-embed")
pip install -qU langchain-nomic
import getpass
import os

if not os.environ.get("NOMIC_API_KEY"):
  os.environ["NOMIC_API_KEY"] = getpass.getpass("Enter API key for Nomic: ")

from langchain_nomic import NomicEmbeddings

embeddings = NomicEmbeddings(model="nomic-embed-text-v1.5")
pip install -qU langchain-nvidia-ai-endpoints
import getpass
import os

if not os.environ.get("NVIDIA_API_KEY"):
  os.environ["NVIDIA_API_KEY"] = getpass.getpass("Enter API key for NVIDIA: ")

from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings

embeddings = NVIDIAEmbeddings(model="NV-Embed-QA")
pip install -qU langchain-voyageai
import getpass
import os

if not os.environ.get("VOYAGE_API_KEY"):
  os.environ["VOYAGE_API_KEY"] = getpass.getpass("Enter API key for Voyage AI: ")

from langchain-voyageai import VoyageAIEmbeddings

embeddings = VoyageAIEmbeddings(model="voyage-3")
pip install -qU langchain-ibm
import getpass
import os

if not os.environ.get("WATSONX_APIKEY"):
  os.environ["WATSONX_APIKEY"] = getpass.getpass("Enter API key for IBM watsonx: ")

from langchain_ibm import WatsonxEmbeddings

embeddings = WatsonxEmbeddings(
    model_id="ibm/slate-125m-english-rtrvr",
    url="https://us-south.ml.cloud.ibm.com",
    project_id="<WATSONX PROJECT_ID>",
)
pip install -qU langchain-core
from langchain_core.embeddings import DeterministicFakeEmbedding

embeddings = DeterministicFakeEmbedding(size=4096)
pip install -qU "langchain[langchain-xai]"
import getpass
import os

if not os.environ.get("XAI_API_KEY"):
  os.environ["XAI_API_KEY"] = getpass.getpass("Enter API key for xAI: ")

from langchain.chat_models import init_chat_model

model = init_chat_model("grok-2", model_provider="xai")
pip install -qU "langchain[langchain-perplexity]"
import getpass
import os

if not os.environ.get("PPLX_API_KEY"):
  os.environ["PPLX_API_KEY"] = getpass.getpass("Enter API key for Perplexity: ")

from langchain.chat_models import init_chat_model

model = init_chat_model("llama-3.1-sonar-small-128k-online", model_provider="perplexity")
pip install -qU "langchain[langchain-deepseek]"
import getpass
import os

if not os.environ.get("DEEPSEEK_API_KEY"):
  os.environ["DEEPSEEK_API_KEY"] = getpass.getpass("Enter API key for DeepSeek: ")

from langchain.chat_models import init_chat_model

model = init_chat_model("deepseek-chat", model_provider="deepseek")
选择向量存储
pip install -qU langchain-core
from langchain_core.vectorstores import InMemoryVectorStore

vector_store = InMemoryVectorStore(embeddings)
pip install -qU langchain-astradb
from langchain_astradb import AstraDBVectorStore

vector_store = AstraDBVectorStore(
    embedding=embeddings,
    api_endpoint=ASTRA_DB_API_ENDPOINT,
    collection_name="astra_vector_langchain",
    token=ASTRA_DB_APPLICATION_TOKEN,
    namespace=ASTRA_DB_NAMESPACE,
)
pip install -qU langchain-azure-ai azure-cosmos
from langchain_azure_ai.vectorstores.azure_cosmos_db_no_sql import (
    AzureCosmosDBNoSqlVectorSearch,
)
vector_search = AzureCosmosDBNoSqlVectorSearch.from_documents(
    documents=docs,
    embedding=openai_embeddings,
    cosmos_client=cosmos_client,
    database_name=database_name,
    container_name=container_name,
    vector_embedding_policy=vector_embedding_policy,
    full_text_policy=full_text_policy,
    indexing_policy=indexing_policy,
    cosmos_container_properties=cosmos_container_properties,
    cosmos_database_properties={},
    full_text_search_enabled=True,
)
pip install -qU langchain-azure-ai pymongo
from langchain_azure_ai.vectorstores.azure_cosmos_db_mongo_vcore import (
    AzureCosmosDBMongoVCoreVectorSearch,
)

vectorstore = AzureCosmosDBMongoVCoreVectorSearch.from_documents(
    docs,
    openai_embeddings,
    collection=collection,
    index_name=INDEX_NAME,
)
pip install -qU langchain-chroma
from langchain_chroma import Chroma

vector_store = Chroma(
    collection_name="example_collection",
    embedding_function=embeddings,
    persist_directory="./chroma_langchain_db",  # Where to save data locally, remove if not necessary
)
pip install -qU langchain-community
import faiss
from langchain_community.docstore.in_memory import InMemoryDocstore
from langchain_community.vectorstores import FAISS

embedding_dim = len(embeddings.embed_query("hello world"))
index = faiss.IndexFlatL2(embedding_dim)

vector_store = FAISS(
    embedding_function=embeddings,
    index=index,
    docstore=InMemoryDocstore(),
    index_to_docstore_id={},
)
pip install -qU langchain-milvus
from langchain_milvus import Milvus

URI = "./milvus_example.db"

vector_store = Milvus(
    embedding_function=embeddings,
    connection_args={"uri": URI},
    index_params={"index_type": "FLAT", "metric_type": "L2"},
)
pip install -qU langchain-mongodb
from langchain_mongodb import MongoDBAtlasVectorSearch

vector_store = MongoDBAtlasVectorSearch(
    embedding=embeddings,
    collection=MONGODB_COLLECTION,
    index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,
    relevance_score_fn="cosine",
)
pip install -qU langchain-postgres
from langchain_postgres import PGVector

vector_store = PGVector(
    embeddings=embeddings,
    collection_name="my_docs",
    connection="postgresql+psycopg://..."
)
pip install -qU langchain-postgres
from langchain_postgres import PGEngine, PGVectorStore

$engine = PGEngine.from_connection_string(
    url="postgresql+psycopg://..."
)

vector_store = PGVectorStore.create_sync(
    engine=pg_engine,
    table_name='test_table',
    embedding_service=embedding
)
pip install -qU langchain-pinecone
from langchain_pinecone import PineconeVectorStore
from pinecone import Pinecone

pc = Pinecone(api_key=...)
index = pc.Index(index_name)

vector_store = PineconeVectorStore(embedding=embeddings, index=index)
pip install -qU langchain-qdrant
from qdrant_client.models import Distance, VectorParams
from langchain_qdrant import QdrantVectorStore
from qdrant_client import QdrantClient

client = QdrantClient(":memory:")

vector_size = len(embeddings.embed_query("sample text"))

if not client.collection_exists("test"):
    client.create_collection(
        collection_name="test",
        vectors_config=VectorParams(size=vector_size, distance=Distance.COSINE)
    )
vector_store = QdrantVectorStore(
    client=client,
    collection_name="test",
    embedding=embeddings,
)
向量存储按 ID 删除过滤按向量搜索带评分搜索异步通过标准测试多租户在添加文档中的 ID
AstraDBVectorStore
AzureCosmosDBNoSqlVectorStore
AzureCosmosDBMongoVCoreVectorStore
Chroma
Clickhouse
CouchbaseSearchVectorStore
DatabricksVectorSearch
ElasticsearchStore
FAISS
InMemoryVectorStore
Milvus
Moorcheh
MongoDBAtlasVectorSearch
openGauss
PGVector
PGVectorStore
PineconeVectorStore
QdrantVectorStore
Weaviate
SQLServer
ZeusDB

所有向量存储

Activeloop Deep Lake

Alibaba Cloud OpenSearch

AnalyticDB

Annoy

Apache Doris

ApertureDB

Astra DB Vector Store

Atlas

AwaDB

Azure Cosmos DB Mongo vCore

Azure Cosmos DB No SQL

Azure AI Search

Bagel

BagelDB

Baidu Cloud ElasticSearch VectorSearch

Baidu VectorDB

Apache Cassandra

Chroma

Clarifai

ClickHouse

Couchbase

DashVector

Databricks

IBM Db2

DingoDB

DocArray HnswSearch

DocArray InMemorySearch

Amazon Document DB

DuckDB

China Mobile ECloud ElasticSearch

Elasticsearch

Epsilla

Faiss

Faiss (Async)

FalkorDB

Gel

Google AlloyDB

Google BigQuery Vector Search

Google Cloud SQL for MySQL

Google Cloud SQL for PostgreSQL

Firestore

Google Memorystore for Redis

Google Spanner

Google Vertex AI Feature Store

Google Vertex AI Vector Search

Hippo

Hologres

Jaguar Vector Database

Kinetica

LanceDB

Lantern

Lindorm

LLMRails

ManticoreSearch

MariaDB

Marqo

Meilisearch

Amazon MemoryDB

Milvus

Momento Vector Index

Moorcheh

MongoDB Atlas

MyScale

Neo4j Vector Index

NucliaDB

Oceanbase

openGauss

OpenSearch

Oracle AI Vector Search

Pathway

Postgres Embedding

PGVecto.rs

PGVector

PGVectorStore

Pinecone

Pinecone (sparse)

Qdrant

Relyt

Rockset

SAP HANA Cloud Vector Engine

ScaNN

SemaDB

SingleStore

scikit-learn

SQLiteVec

SQLite-VSS

SQLServer

StarRocks

Supabase

SurrealDB

Tablestore

Tair

Tencent Cloud VectorDB

ThirdAI NeuralDB

TiDB Vector

Tigris

TileDB

Timescale Vector

Typesense

Upstash Vector

USearch

Vald

VDMS

Vearch

Vectara

Vespa

viking DB

vlite

Weaviate

Xata

YDB

Yellowbrick

Zep

Zep Cloud

ZeusDB

Zilliz


以编程方式连接这些文档到 Claude、VSCode 等,通过 MCP 获取实时答案。
© . This site is unofficial and not affiliated with LangChain, Inc.