跳到主要内容
Amazon SageMaker 是一项完全托管的服务,用于快速轻松地构建、训练和部署机器学习 (ML) 模型。
Amazon SageMaker ExperimentsAmazon SageMaker 的一项功能,可让您组织、跟踪、比较和评估 ML 实验和模型版本。
本笔记本展示了如何使用 LangChain 回调将提示和其他 LLM 超参数记录和跟踪到 SageMaker Experiments 中。这里,我们使用不同的场景来展示其功能。
  • 场景 1单个 LLM - 使用单个 LLM 模型根据给定提示生成输出的案例。
  • 场景 2顺序链 - 使用两个 LLM 模型的顺序链的案例。
  • 场景 3带工具的代理(思维链) - 除了 LLM 之外,还使用多个工具(搜索和数学)的案例。
在本笔记本中,我们将创建一个实验来记录每个场景的提示。

安装和设置

pip install -qU  sagemaker
pip install -qU  langchain-openai
pip install -qU  google-search-results
首先,设置所需的 API 密钥
import os

## Add your API keys below
os.environ["OPENAI_API_KEY"] = "<ADD-KEY-HERE>"
os.environ["SERPAPI_API_KEY"] = "<ADD-KEY-HERE>"
from langchain_community.callbacks.sagemaker_callback import SageMakerCallbackHandler
from langchain.agents import initialize_agent, load_tools
from langchain.chains import LLMChain, SimpleSequentialChain
from langchain_core.prompts import PromptTemplate
from langchain_openai import OpenAI
from sagemaker.analytics import ExperimentAnalytics
from sagemaker.experiments.run import Run
from sagemaker.session import Session

LLM 提示追踪

# LLM Hyperparameters
HPARAMS = {
    "temperature": 0.1,
    "model_name": "gpt-3.5-turbo-instruct",
}

# Bucket used to save prompt logs (Use `None` is used to save the default bucket or otherwise change it)
BUCKET_NAME = None

# Experiment name
EXPERIMENT_NAME = "langchain-sagemaker-tracker"

# Create SageMaker Session with the given bucket
session = Session(default_bucket=BUCKET_NAME)

场景 1 - LLM

RUN_NAME = "run-scenario-1"
PROMPT_TEMPLATE = "tell me a joke about {topic}"
INPUT_VARIABLES = {"topic": "fish"}
with Run(
    experiment_name=EXPERIMENT_NAME, run_name=RUN_NAME, sagemaker_session=session
) as run:
    # Create SageMaker Callback
    sagemaker_callback = SageMakerCallbackHandler(run)

    # Define LLM model with callback
    llm = OpenAI(callbacks=[sagemaker_callback], **HPARAMS)

    # Create prompt template
    prompt = PromptTemplate.from_template(template=PROMPT_TEMPLATE)

    # Create LLM Chain
    chain = LLMChain(llm=llm, prompt=prompt, callbacks=[sagemaker_callback])

    # Run chain
    chain.run(**INPUT_VARIABLES)

    # Reset the callback
    sagemaker_callback.flush_tracker()

场景 2 - 顺序链

RUN_NAME = "run-scenario-2"

PROMPT_TEMPLATE_1 = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title.
Title: {title}
Playwright: This is a synopsis for the above play:"""
PROMPT_TEMPLATE_2 = """You are a play critic from the New York Times. Given the synopsis of play, it is your job to write a review for that play.
Play Synopsis: {synopsis}
Review from a New York Times play critic of the above play:"""

INPUT_VARIABLES = {
    "input": "documentary about good video games that push the boundary of game design"
}
with Run(
    experiment_name=EXPERIMENT_NAME, run_name=RUN_NAME, sagemaker_session=session
) as run:
    # Create SageMaker Callback
    sagemaker_callback = SageMakerCallbackHandler(run)

    # Create prompt templates for the chain
    prompt_template1 = PromptTemplate.from_template(template=PROMPT_TEMPLATE_1)
    prompt_template2 = PromptTemplate.from_template(template=PROMPT_TEMPLATE_2)

    # Define LLM model with callback
    llm = OpenAI(callbacks=[sagemaker_callback], **HPARAMS)

    # Create chain1
    chain1 = LLMChain(llm=llm, prompt=prompt_template1, callbacks=[sagemaker_callback])

    # Create chain2
    chain2 = LLMChain(llm=llm, prompt=prompt_template2, callbacks=[sagemaker_callback])

    # Create Sequential chain
    overall_chain = SimpleSequentialChain(
        chains=[chain1, chain2], callbacks=[sagemaker_callback]
    )

    # Run overall sequential chain
    overall_chain.run(**INPUT_VARIABLES)

    # Reset the callback
    sagemaker_callback.flush_tracker()

场景 3 - 带工具的代理

RUN_NAME = "run-scenario-3"
PROMPT_TEMPLATE = "Who is the oldest person alive? And what is their current age raised to the power of 1.51?"
with Run(
    experiment_name=EXPERIMENT_NAME, run_name=RUN_NAME, sagemaker_session=session
) as run:
    # Create SageMaker Callback
    sagemaker_callback = SageMakerCallbackHandler(run)

    # Define LLM model with callback
    llm = OpenAI(callbacks=[sagemaker_callback], **HPARAMS)

    # Define tools
    tools = load_tools(["serpapi", "llm-math"], llm=llm, callbacks=[sagemaker_callback])

    # Initialize agent with all the tools
    agent = initialize_agent(
        tools, llm, agent="zero-shot-react-description", callbacks=[sagemaker_callback]
    )

    # Run agent
    agent.run(input=PROMPT_TEMPLATE)

    # Reset the callback
    sagemaker_callback.flush_tracker()

加载日志数据

提示记录后,我们可以轻松地加载它们并将其转换为 Pandas DataFrame,如下所示。
# Load
logs = ExperimentAnalytics(experiment_name=EXPERIMENT_NAME)

# Convert as pandas dataframe
df = logs.dataframe(force_refresh=True)

print(df.shape)
df.head()
如上所示,实验中有三个运行(行),对应于每个场景。每个运行都以 json 格式记录提示和相关的 LLM 设置/超参数,并保存在 s3 存储桶中。您可以随意从每个 json 路径加载和探索日志数据。

以编程方式连接这些文档到 Claude、VSCode 等,通过 MCP 获取实时答案。
© . This site is unofficial and not affiliated with LangChain, Inc.