跳到主要内容
Azure Machine Learning 是一个用于构建、训练和部署机器学习模型的平台。用户可以在模型目录中探索要部署的模型类型,模型目录提供了来自不同提供商的基础模型和通用模型。 通常,您需要部署模型才能使用其预测(推理)。在 Azure Machine Learning 中,在线端点用于部署这些模型并提供实时服务。它们基于端点部署的概念,允许您将生产工作负载的接口与提供服务的实现解耦。
本笔记本介绍了如何使用托管在 Azure Machine Learning 端点上的聊天模型。
from langchain_community.chat_models.azureml_endpoint import AzureMLChatOnlineEndpoint

设置

您必须在 Azure ML 上部署模型部署到 Azure AI Foundry(以前称为 Azure AI Studio)并获取以下参数
  • endpoint_url: 端点提供的 REST 端点 URL。
  • endpoint_api_type: 将模型部署到专用端点(托管的基础设施)时使用endpoint_type='dedicated'。使用即用即付服务(模型即服务)部署模型时使用endpoint_type='serverless'
  • endpoint_api_key: 端点提供的 API 密钥

内容格式化程序

content_formatter 参数是一个处理程序类,用于转换 AzureML 端点的请求和响应以匹配所需的架构。由于模型目录中有各种模型,每个模型处理数据的方式可能不同,因此提供了 ContentFormatterBase 类,允许用户根据自己的喜好转换数据。提供了以下内容格式化程序
  • CustomOpenAIChatContentFormatter: 格式化遵循 OpenAI API 规范的请求和响应的模型(例如 LLaMa2-chat)的请求和响应数据。
注意:langchain.chat_models.azureml_endpoint.LlamaChatContentFormatter 正在被弃用,取而代之的是 langchain.chat_models.azureml_endpoint.CustomOpenAIChatContentFormatter 您可以实现特定于您的模型的自定义内容格式化程序,这些格式化程序派生自 langchain_community.llms.azureml_endpoint.ContentFormatterBase 类。

示例

以下部分包含有关如何使用此类的示例

示例:使用实时端点的聊天补全

from langchain_community.chat_models.azureml_endpoint import (
    AzureMLEndpointApiType,
    CustomOpenAIChatContentFormatter,
)
from langchain.messages import HumanMessage

chat = AzureMLChatOnlineEndpoint(
    endpoint_url="https://<your-endpoint>.<your_region>.inference.ml.azure.com/score",
    endpoint_api_type=AzureMLEndpointApiType.dedicated,
    endpoint_api_key="my-api-key",
    content_formatter=CustomOpenAIChatContentFormatter(),
)
response = chat.invoke(
    [HumanMessage(content="Will the Collatz conjecture ever be solved?")]
)
response
AIMessage(content='  The Collatz Conjecture is one of the most famous unsolved problems in mathematics, and it has been the subject of much study and research for many years. While it is impossible to predict with certainty whether the conjecture will ever be solved, there are several reasons why it is considered a challenging and important problem:\n\n1. Simple yet elusive: The Collatz Conjecture is a deceptively simple statement that has proven to be extraordinarily difficult to prove or disprove. Despite its simplicity, the conjecture has eluded some of the brightest minds in mathematics, and it remains one of the most famous open problems in the field.\n2. Wide-ranging implications: The Collatz Conjecture has far-reaching implications for many areas of mathematics, including number theory, algebra, and analysis. A solution to the conjecture could have significant impacts on these fields and potentially lead to new insights and discoveries.\n3. Computational evidence: While the conjecture remains unproven, extensive computational evidence supports its validity. In fact, no counterexample to the conjecture has been found for any starting value up to 2^64 (a number', additional_kwargs={}, example=False)

示例:使用即用即付部署(模型即服务)的聊天补全

chat = AzureMLChatOnlineEndpoint(
    endpoint_url="https://<your-endpoint>.<your_region>.inference.ml.azure.com/v1/chat/completions",
    endpoint_api_type=AzureMLEndpointApiType.serverless,
    endpoint_api_key="my-api-key",
    content_formatter=CustomOpenAIChatContentFormatter,
)
response = chat.invoke(
    [HumanMessage(content="Will the Collatz conjecture ever be solved?")]
)
response
如果您需要向模型传递其他参数,请使用 model_kwargs 参数
chat = AzureMLChatOnlineEndpoint(
    endpoint_url="https://<your-endpoint>.<your_region>.inference.ml.azure.com/v1/chat/completions",
    endpoint_api_type=AzureMLEndpointApiType.serverless,
    endpoint_api_key="my-api-key",
    content_formatter=CustomOpenAIChatContentFormatter,
    model_kwargs={"temperature": 0.8},
)
参数也可以在调用期间传递
response = chat.invoke(
    [HumanMessage(content="Will the Collatz conjecture ever be solved?")],
    max_tokens=512,
)
response

以编程方式连接这些文档到 Claude、VSCode 等,通过 MCP 获取实时答案。
© . This site is unofficial and not affiliated with LangChain, Inc.