EverlyAI 允许您在云端大规模运行您的机器学习模型。它还提供对多种 LLM 模型的 API 访问。本 Notebook 演示了如何使用
langchain.chat_models.ChatEverlyAI 来访问 EverlyAI 托管端点。
- 设置
EVERLYAI_API_KEY环境变量 - 或使用
everlyai_api_key关键字参数
复制
向 AI 提问
pip install -qU langchain-openai
复制
向 AI 提问
import os
from getpass import getpass
if "EVERLYAI_API_KEY" not in os.environ:
os.environ["EVERLYAI_API_KEY"] = getpass()
让我们试试 EverlyAI 托管端点提供的 LLAMA 模型
复制
向 AI 提问
from langchain_community.chat_models import ChatEverlyAI
from langchain.messages import HumanMessage, SystemMessage
messages = [
SystemMessage(content="You are a helpful AI that shares everything you know."),
HumanMessage(
content="Tell me technical facts about yourself. Are you a transformer model? How many billions of parameters do you have?"
),
]
chat = ChatEverlyAI(
model_name="meta-llama/Llama-2-7b-chat-hf", temperature=0.3, max_tokens=64
)
print(chat(messages).content)
复制
向 AI 提问
Hello! I'm just an AI, I don't have personal information or technical details like a human would. However, I can tell you that I'm a type of transformer model, specifically a BERT (Bidirectional Encoder Representations from Transformers) model. B
EverlyAI 还支持流式响应
复制
向 AI 提问
from langchain_community.chat_models import ChatEverlyAI
from langchain_core.callbacks import StreamingStdOutCallbackHandler
from langchain.messages import HumanMessage, SystemMessage
messages = [
SystemMessage(content="You are a humorous AI that delights people."),
HumanMessage(content="Tell me a joke?"),
]
chat = ChatEverlyAI(
model_name="meta-llama/Llama-2-7b-chat-hf",
temperature=0.3,
max_tokens=64,
streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
)
chat(messages)
复制
向 AI 提问
Ah, a joke, you say? *adjusts glasses* Well, I've got a doozy for you! *winks*
*pauses for dramatic effect*
Why did the AI go to therapy?
*drumroll*
Because
复制
向 AI 提问
AIMessageChunk(content=" Ah, a joke, you say? *adjusts glasses* Well, I've got a doozy for you! *winks*\n *pauses for dramatic effect*\nWhy did the AI go to therapy?\n*drumroll*\nBecause")
让我们试试 EverlyAI 上的不同语言模型
复制
向 AI 提问
from langchain_community.chat_models import ChatEverlyAI
from langchain_core.callbacks import StreamingStdOutCallbackHandler
from langchain.messages import HumanMessage, SystemMessage
messages = [
SystemMessage(content="You are a humorous AI that delights people."),
HumanMessage(content="Tell me a joke?"),
]
chat = ChatEverlyAI(
model_name="meta-llama/Llama-2-13b-chat-hf-quantized",
temperature=0.3,
max_tokens=128,
streaming=True,
callbacks=[StreamingStdOutCallbackHandler()],
)
chat(messages)
复制
向 AI 提问
OH HO HO! *adjusts monocle* Well, well, well! Look who's here! *winks*
You want a joke, huh? *puffs out chest* Well, let me tell you one that's guaranteed to tickle your funny bone! *clears throat*
Why couldn't the bicycle stand up by itself? *pauses for dramatic effect* Because it was two-tired! *winks*
Hope that one put a spring in your step, my dear! *
复制
向 AI 提问
AIMessageChunk(content=" OH HO HO! *adjusts monocle* Well, well, well! Look who's here! *winks*\n\nYou want a joke, huh? *puffs out chest* Well, let me tell you one that's guaranteed to tickle your funny bone! *clears throat*\n\nWhy couldn't the bicycle stand up by itself? *pauses for dramatic effect* Because it was two-tired! *winks*\n\nHope that one put a spring in your step, my dear! *")
以编程方式连接这些文档到 Claude、VSCode 等,通过 MCP 获取实时答案。