跳到主要内容
这将帮助您开始使用 Outlines 聊天模型。有关所有 ChatOutlines 功能和配置的详细文档,请参阅API 参考 Outlines 是一个用于受限语言生成的库。它允许您将大型语言模型 (LLM) 与各种后端一起使用,同时对生成的输出应用约束。

概览

集成详情

类别本地可序列化JS 支持下载量版本
ChatOutlineslangchain-communityPyPI - DownloadsPyPI - Version

模型功能

工具调用结构化输出JSON 模式图像输入音频输入视频输入令牌级流式传输原生异步Token 用量Logprobs

设置

要访问 Outlines 模型,您需要有互联网连接才能从 HuggingFace 下载模型权重。根据后端,您需要安装所需的依赖项(请参阅 Outlines 文档

凭据

Outlines 没有内置的身份验证机制。

安装

LangChain Outlines 集成位于 langchain-community 包中,并需要 outlines 库。
pip install -qU langchain-community outlines

实例化

现在我们可以实例化我们的模型对象并生成聊天完成
from langchain_community.chat_models.outlines import ChatOutlines

# For llamacpp backend
model = ChatOutlines(model="TheBloke/phi-2-GGUF/phi-2.Q4_K_M.gguf", backend="llamacpp")

# For vllm backend (not available on Mac)
model = ChatOutlines(model="meta-llama/Llama-3.2-1B", backend="vllm")

# For mlxlm backend (only available on Mac)
model = ChatOutlines(model="mistralai/Ministral-8B-Instruct-2410", backend="mlxlm")

# For huggingface transformers backend
model = ChatOutlines(model="microsoft/phi-2")  # defaults to transformers backend

调用

from langchain.messages import HumanMessage

messages = [HumanMessage(content="What will the capital of mars be called?")]
response = model.invoke(messages)

response.content

流式处理

ChatOutlines 支持令牌流式传输。
messages = [HumanMessage(content="Count to 10 in French:")]

for chunk in model.stream(messages):
    print(chunk.content, end="", flush=True)

链接

from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_messages(
    [
        (
            "system",
            "You are a helpful assistant that translates {input_language} to {output_language}.",
        ),
        ("human", "{input}"),
    ]
)

chain = prompt | model
chain.invoke(
    {
        "input_language": "English",
        "output_language": "German",
        "input": "I love programming.",
    }
)

受限生成

ChatOutlines 允许您对生成的输出应用各种约束。

正则表达式约束

model.regex = r"((25[0-5]|2[0-4]\d|[01]?\d\d?)\.){3}(25[0-5]|2[0-4]\d|[01]?\d\d?)"

response = model.invoke("What is the IP address of Google's DNS server?")

response.content

类型约束

model.type_constraints = int
response = model.invoke("What is the answer to life, the universe, and everything?")

response.content

Pydantic 和 JSON 模式

from pydantic import BaseModel


class Person(BaseModel):
    name: str


model.json_schema = Person
response = model.invoke("Who are the main contributors to LangChain?")
person = Person.model_validate_json(response.content)

person

上下文无关文法

model.grammar = """
?start: expression
?expression: term (("+" | "-") term)*
?term: factor (("*" | "/") factor)*
?factor: NUMBER | "-" factor | "(" expression ")"
%import common.NUMBER
%import common.WS
%ignore WS
"""
response = model.invoke("Give me a complex arithmetic expression:")

response.content

LangChain 的结构化输出

您还可以将 LangChain 的结构化输出与 ChatOutlines 一起使用。
from pydantic import BaseModel


class AnswerWithJustification(BaseModel):
    answer: str
    justification: str


_model = model.with_structured_output(AnswerWithJustification)
result = _model.invoke("What weighs more, a pound of bricks or a pound of feathers?")

result

API 参考

有关所有 ChatOutlines 功能和配置的详细文档,请参阅 API 参考:python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.outlines.ChatOutlines.html

完整的 Outlines 文档

dottxt-ai.github.io/outlines/latest/
以编程方式连接这些文档到 Claude、VSCode 等,通过 MCP 获取实时答案。
© . This site is unofficial and not affiliated with LangChain, Inc.