跳到主要内容
本 notebook 演示了如何使用 iMessage 聊天加载器。该类有助于将 iMessage 对话转换为 LangChain 聊天消息。 在 macOS 上,iMessage 将对话存储在 ~/Library/Messages/chat.db 的 sqlite 数据库中(至少对于 macOS Ventura 13.4)。IMessageChatLoader 从此数据库文件加载。
  1. 使用指向要处理的 chat.db 数据库的文件路径创建 IMessageChatLoader
  2. 调用 loader.load()(或 loader.lazy_load())执行转换。可以选择使用 merge_chat_runs 合并同一发件人按顺序发送的消息,和/或使用 map_ai_messages 将指定发件人的消息转换为“AIMessage”类。

1. 访问聊天数据库

您的终端可能被拒绝访问 ~/Library/Messages。要使用此类,您可以将数据库复制到可访问的目录(例如,Documents)并从那里加载。或者(不推荐),您可以在“系统设置”>“安全与隐私”>“完全磁盘访问”中授予终端模拟器完全磁盘访问权限。 我们创建了一个示例数据库,您可以在此链接的云端硬盘文件中使用。
# This uses some example data
import requests


def download_drive_file(url: str, output_path: str = "chat.db") -> None:
    file_id = url.split("/")[-2]
    download_url = f"https://drive.google.com/uc?export=download&id={file_id}"

    response = requests.get(download_url)
    if response.status_code != 200:
        print("Failed to download the file.")
        return

    with open(output_path, "wb") as file:
        file.write(response.content)
        print(f"File {output_path} downloaded.")


url = (
    "https://drive.google.com/file/d/1NebNKqTA2NXApCmeH6mu0unJD2tANZzo/view?usp=sharing"
)

# Download file to chat.db
download_drive_file(url)
File chat.db downloaded.

2. 创建聊天加载器

向加载器提供 zip 目录的文件路径。您可以选择指定映射到 AI 消息的用户 ID,并配置是否合并消息运行。
from langchain_community.chat_loaders.imessage import IMessageChatLoader
loader = IMessageChatLoader(
    path="./chat.db",
)

3. 加载消息

load()(或 lazy_load)方法返回一个“ChatSessions”列表,目前只包含每个加载对话的消息列表。所有消息最初都映射到“HumanMessage”对象。 您可以选择合并消息“运行”(来自同一发件人的连续消息)并选择一个发件人代表“AI”。微调后的 LLM 将学会生成这些 AI 消息。
from typing import List

from langchain_community.chat_loaders.utils import (
    map_ai_messages,
    merge_chat_runs,
)
from langchain_core.chat_sessions import ChatSession

raw_messages = loader.lazy_load()
# Merge consecutive messages from the same sender into a single message
merged_messages = merge_chat_runs(raw_messages)
# Convert messages from "Tortoise" to AI messages. Do you have a guess who these conversations are between?
chat_sessions: List[ChatSession] = list(
    map_ai_messages(merged_messages, sender="Tortoise")
)
# Now all of the Tortoise's messages will take the AIMessage class
# which maps to the 'assistant' role in OpenAI's training format
chat_sessions[0]["messages"][:3]
[AIMessage(content="Slow and steady, that's my motto.", additional_kwargs={'message_time': 1693182723, 'sender': 'Tortoise'}, example=False),
 HumanMessage(content='Speed is key!', additional_kwargs={'message_time': 1693182753, 'sender': 'Hare'}, example=False),
 AIMessage(content='A balanced approach is more reliable.', additional_kwargs={'message_time': 1693182783, 'sender': 'Tortoise'}, example=False)]

3. 准备微调

现在是时候将我们的聊天消息转换为 OpenAI 字典了。我们可以使用 convert_messages_for_finetuning 工具来完成此操作。
from langchain_community.adapters.openai import convert_messages_for_finetuning
training_data = convert_messages_for_finetuning(chat_sessions)
print(f"Prepared {len(training_data)} dialogues for training")
Prepared 10 dialogues for training

4. 微调模型

是时候微调模型了。确保您已安装 openai 并已正确设置 OPENAI_API_KEY
pip install -qU  langchain-openai
import json
import time
from io import BytesIO

import openai

# We will write the jsonl file in memory
my_file = BytesIO()
for m in training_data:
    my_file.write((json.dumps({"messages": m}) + "\n").encode("utf-8"))

my_file.seek(0)
training_file = openai.files.create(file=my_file, purpose="fine-tune")

# OpenAI audits each training file for compliance reasons.
# This make take a few minutes
status = openai.files.retrieve(training_file.id).status
start_time = time.time()
while status != "processed":
    print(f"Status=[{status}]... {time.time() - start_time:.2f}s", end="\r", flush=True)
    time.sleep(5)
    status = openai.files.retrieve(training_file.id).status
print(f"File {training_file.id} ready after {time.time() - start_time:.2f} seconds.")
File file-zHIgf4r8LltZG3RFpkGd4Sjf ready after 10.19 seconds.
文件准备就绪后,是时候启动训练任务了。
job = openai.fine_tuning.jobs.create(
    training_file=training_file.id,
    model="gpt-3.5-turbo",
)
在模型准备期间,喝杯茶放松一下。这可能需要一些时间!
status = openai.fine_tuning.jobs.retrieve(job.id).status
start_time = time.time()
while status != "succeeded":
    print(f"Status=[{status}]... {time.time() - start_time:.2f}s", end="\r", flush=True)
    time.sleep(5)
    job = openai.fine_tuning.jobs.retrieve(job.id)
    status = job.status
Status=[running]... 524.95s
print(job.fine_tuned_model)
ft:gpt-3.5-turbo-0613:personal::7sKoRdlz

5. 在 LangChain 中使用

您可以直接在 ChatOpenAI 模型类中使用生成的模型 ID。
from langchain_openai import ChatOpenAI

model = ChatOpenAI(
    model=job.fine_tuned_model,
    temperature=1,
)
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_messages(
    [
        ("system", "You are speaking to hare."),
        ("human", "{input}"),
    ]
)

chain = prompt | model | StrOutputParser()
for tok in chain.stream({"input": "What's the golden thread?"}):
    print(tok, end="", flush=True)
A symbol of interconnectedness.

以编程方式连接这些文档到 Claude、VSCode 等,通过 MCP 获取实时答案。
© . This site is unofficial and not affiliated with LangChain, Inc.