Figma 是一款用于界面设计的协作式网络应用程序。本笔记本介绍了如何将
Figma REST API 中的数据加载为可被 LangChain 使用的格式,并提供了代码生成的示例用法。
复制
向 AI 提问
import os
from langchain.indexes import VectorstoreIndexCreator
from langchain_community.document_loaders.figma import FigmaFileLoader
from langchain_core.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain_openai import ChatOpenAI
复制
向 AI 提问
figma_loader = FigmaFileLoader(
os.environ.get("ACCESS_TOKEN"),
os.environ.get("NODE_IDS"),
os.environ.get("FILE_KEY"),
)
复制
向 AI 提问
# see https://python.langchain.ac.cn/en/latest/modules/data_connection/getting_started.html for more details
index = VectorstoreIndexCreator().from_loaders([figma_loader])
figma_doc_retriever = index.vectorstore.as_retriever()
复制
向 AI 提问
def generate_code(human_input):
# I have no idea if the Jon Carmack thing makes for better code. YMMV.
# See https://python.langchain.ac.cn/en/latest/modules/models/chat/getting_started.html for chat info
system_prompt_template = """You are expert coder Jon Carmack. Use the provided design context to create idiomatic HTML/CSS code as possible based on the user request.
Everything must be inline in one file and your response must be directly renderable by the browser.
Figma file nodes and metadata: {context}"""
human_prompt_template = "Code the {text}. Ensure it's mobile responsive"
system_message_prompt = SystemMessagePromptTemplate.from_template(
system_prompt_template
)
human_message_prompt = HumanMessagePromptTemplate.from_template(
human_prompt_template
)
# delete the gpt-4 model_name to use the default gpt-3.5 turbo for faster results
gpt_4 = ChatOpenAI(temperature=0.02, model_name="gpt-4")
# Use the retriever's 'get_relevant_documents' method if needed to filter down longer docs
relevant_nodes = figma_doc_retriever.invoke(human_input)
conversation = [system_message_prompt, human_message_prompt]
chat_prompt = ChatPromptTemplate.from_messages(conversation)
response = gpt_4(
chat_prompt.format_prompt(
context=relevant_nodes, text=human_input
).to_messages()
)
return response
复制
向 AI 提问
response = generate_code("page top header")
response.content 中返回以下内容
复制
向 AI 提问
<!DOCTYPE html>\n<html lang="en">\n<head>\n <meta charset="UTF-8">\n <meta name="viewport" content="width=device-width, initial-scale=1.0">\n <style>\n @import url(\'https://fonts.googleapis.ac.cn/css2?family=DM+Sans:wght@500;700&family=Inter:wght@600&display=swap\');\n\n body {\n margin: 0;\n font-family: \'DM Sans\', sans-serif;\n }\n\n .header {\n display: flex;\n justify-content: space-between;\n align-items: center;\n padding: 20px;\n background-color: #fff;\n box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);\n }\n\n .header h1 {\n font-size: 16px;\n font-weight: 700;\n margin: 0;\n }\n\n .header nav {\n display: flex;\n align-items: center;\n }\n\n .header nav a {\n font-size: 14px;\n font-weight: 500;\n text-decoration: none;\n color: #000;\n margin-left: 20px;\n }\n\n @media (max-width: 768px) {\n .header nav {\n display: none;\n }\n }\n </style>\n</head>\n<body>\n <header class="header">\n <h1>Company Contact</h1>\n <nav>\n <a href="#">Lorem Ipsum</a>\n <a href="#">Lorem Ipsum</a>\n <a href="#">Lorem Ipsum</a>\n </nav>\n </header>\n</body>\n</html>
以编程方式连接这些文档到 Claude、VSCode 等,通过 MCP 获取实时答案。