跳到主要内容
本指南提供了 LangSmith 文档加载器的快速入门概述。有关 LangSmithLoader 所有功能和配置的详细文档,请查阅API 参考

概览

集成详情

类别本地可序列化JS 支持
LangSmithLoaderlangchain-core

加载器功能

来源惰性加载原生异步
LangSmithLoader

设置

要访问 LangSmith 文档加载器,您需要安装 langchain-core,创建一个 LangSmith 帐户并获取 API 密钥。

凭据

langsmith.com 注册并生成 API 密钥。完成后,设置 LANGSMITH_API_KEY 环境变量。
import getpass
import os

if not os.environ.get("LANGSMITH_API_KEY"):
    os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
如果您想获得一流的自动化跟踪,您还可以开启 LangSmith 跟踪。
os.environ["LANGSMITH_TRACING"] = "true"

安装

安装 langchain-core
pip install -qU langchain-core

克隆示例数据集

在本示例中,我们将克隆并加载一个公共 LangSmith 数据集。克隆会在我们的个人 LangSmith 帐户上创建此数据集的副本。您只能加载您拥有个人副本的数据集。
from langsmith import Client as LangSmithClient

ls_client = LangSmithClient()

dataset_name = "LangSmith Few Shot Datasets Notebook"
dataset_public_url = (
    "https://smith.langchain.com/public/55658626-124a-4223-af45-07fb774a6212/d"
)

ls_client.clone_public_dataset(dataset_public_url)

初始化

现在我们可以实例化文档加载器并加载文档了。
from langchain_core.document_loaders import LangSmithLoader

loader = LangSmithLoader(
    dataset_name=dataset_name,
    content_key="question",
    limit=50,
    # format_content=...,
    # ...
)

加载

docs = loader.load()
print(docs[0].page_content)
Show me an example using Weaviate, but customizing the vectorStoreRetriever to return the top 10 k nearest neighbors.
print(docs[0].metadata["inputs"])
{'question': 'Show me an example using Weaviate, but customizing the vectorStoreRetriever to return the top 10 k nearest neighbors. '}
print(docs[0].metadata["outputs"])
{'answer': 'To customize the Weaviate client and return the top 10 k nearest neighbors, you can utilize the `as_retriever` method with the appropriate parameters. Here\'s how you can achieve this:\n\n\`\`\`python\n# Assuming you have imported the necessary modules and classes\n\n# Create the Weaviate client\nclient = weaviate.Client(url=os.environ["WEAVIATE_URL"], ...)\n\n# Initialize the Weaviate wrapper\nweaviate = Weaviate(client, index_name, text_key)\n\n# Customize the client to return top 10 k nearest neighbors using as_retriever\ncustom_retriever = weaviate.as_retriever(\n    search_type="similarity",\n    search_kwargs={\n        \'k\': 10  # Customize the value of k as needed\n    }\n)\n\n# Now you can use the custom_retriever to perform searches\nresults = custom_retriever.search(query, ...)\n\`\`\`'}
list(docs[0].metadata.keys())
['dataset_id',
 'inputs',
 'outputs',
 'metadata',
 'id',
 'created_at',
 'modified_at',
 'runs',
 'source_run_id']

延迟加载

page = []
for doc in loader.lazy_load():
    page.append(doc)
    if len(page) >= 10:
        # do some paged operation, e.g.
        # index.upsert(page)
        # page = []
        break
len(page)
10

API 参考

有关 LangSmithLoader 所有功能和配置的详细文档,请查阅 API 参考:python.langchain.com/api_reference/core/document_loaders/langchain_core.document_loaders.langsmith.LangSmithLoader.html
以编程方式连接这些文档到 Claude、VSCode 等,通过 MCP 获取实时答案。
© . This site is unofficial and not affiliated with LangChain, Inc.