跳到主要内容
本笔记本演示了如何使用 Jina Reranker 进行文档压缩和检索。
pip install -qU langchain langchain-openai langchain-community langchain-text-splitters langchainhub

pip install -qU  faiss

# OR  (depending on Python version)

pip install -qU  faiss_cpu
# Helper function for printing docs


def pretty_print_docs(docs):
    print(
        f"\n{'-' * 100}\n".join(
            [f"Document {i + 1}:\n\n" + d.page_content for i, d in enumerate(docs)]
        )
    )

设置基础向量存储检索器

我们首先初始化一个简单的向量存储检索器,并存储 2023 年国情咨文(分块)。我们可以将检索器设置为检索大量(20 篇)文档。
设置 Jina 和 OpenAI API 密钥
import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass()
os.environ["JINA_API_KEY"] = getpass.getpass()
from langchain_community.document_loaders import TextLoader
from langchain_community.embeddings import JinaEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_text_splitters import RecursiveCharacterTextSplitter

documents = TextLoader(
    "../../how_to/state_of_the_union.txt",
).load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
texts = text_splitter.split_documents(documents)

embedding = JinaEmbeddings(model_name="jina-embeddings-v2-base-en")
retriever = FAISS.from_documents(texts, embedding).as_retriever(search_kwargs={"k": 20})

query = "What did the president say about Ketanji Brown Jackson"
docs = retriever.get_relevant_documents(query)
pretty_print_docs(docs)

使用 JinaRerank 进行重排序

现在,让我们用 ContextualCompressionRetriever 封装我们的基本检索器,并使用 Jina Reranker 作为压缩器。
from langchain_classic.retrievers.contextual_compression import ContextualCompressionRetriever
from langchain_community.document_compressors import JinaRerank

compressor = JinaRerank()
compression_retriever = ContextualCompressionRetriever(
    base_compressor=compressor, base_retriever=retriever
)

compressed_docs = compression_retriever.get_relevant_documents(
    "What did the president say about Ketanji Jackson Brown"
)
pretty_print_docs(compressed_docs)

使用 Jina Reranker 进行问答重排序

from langchain_classic import hub
from langchain.chains import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain

retrieval_qa_chat_prompt = hub.pull("langchain-ai/retrieval-qa-chat")
retrieval_qa_chat_prompt.pretty_print()
================================ System Message ================================

Answer any use questions based solely on the context below:

<context>
{context}
</context>

============================= Messages Placeholder =============================

{chat_history}

================================ Human Message =================================

{input}
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(model="gpt-4o-mini", temperature=0)
combine_docs_chain = create_stuff_documents_chain(llm, retrieval_qa_chat_prompt)
chain = create_retrieval_chain(compression_retriever, combine_docs_chain)
chain.invoke({"input": query})

以编程方式连接这些文档到 Claude、VSCode 等,通过 MCP 获取实时答案。
© . This site is unofficial and not affiliated with LangChain, Inc.