跳到主要内容
Ontotext GraphDB 是一个符合 RDFSPARQL 的图数据库和知识发现工具。
本笔记本展示了如何使用 LLM 为 Ontotext GraphDB 提供自然语言查询(NLQ 到 SPARQL,也称为 text2sparql)。

GraphDB LLM 功能

GraphDB 支持一些 LLM 集成功能,如下所述:这里 gpt-queries
  • 使用知识图谱(KG)中的数据,向 LLM 请求文本、列表或表格的魔法谓词
  • 查询解释
  • 结果解释、摘要、改写、翻译
检索-graphdb-连接器
  • 在向量数据库中索引知识图谱实体
  • 支持任何文本嵌入算法和向量数据库
  • 使用 GraphDB 用于 Elastic、Solr、Lucene 的相同强大的连接器(索引)语言
  • 将 RDF 数据中的更改自动同步到知识图谱实体索引
  • 支持嵌套对象(GraphDB 10.5 版本中无 UI 支持)
  • 将知识图谱实体序列化为文本,例如(对于葡萄酒数据集)
Franvino:
- is a RedWine.
- made from grape Merlo.
- made from grape Cabernet Franc.
- has sugar dry.
- has year 2012.
与图对话
  • 使用定义的知识图谱实体索引的简单聊天机器人
本教程中,我们不会使用 GraphDB LLM 集成,而是从 NLQ 生成 SPARQL。我们将使用 星球大战 API (SWAPI) 本体和数据集,您可以在这里查看。

设置

您需要一个正在运行的 GraphDB 实例。本教程展示了如何使用 GraphDB Docker 镜像在本地运行数据库。它提供了一个 docker compose 设置,用星球大战数据集填充 GraphDB。所有必需的文件,包括本笔记本,都可以从 GitHub 仓库 langchain-graphdb-qa-chain-demo 下载。
docker build --tag graphdb .
docker compose up -d graphdb
您需要等待几秒钟,数据库才能在 https://:7200/ 启动。星球大战数据集 starwars-data.trig 会自动加载到 langchain 仓库中。本地 SPARQL 端点 https://:7200/repositories/langchain 可用于运行查询。您还可以从您喜欢的网络浏览器 https://:7200/sparql 打开 GraphDB 工作台,在那里您可以交互式地进行查询。
  • 设置工作环境
如果您使用 conda,请创建并激活一个新的 conda 环境,例如
conda create -n graph_ontotext_graphdb_qa python=3.12
conda activate graph_ontotext_graphdb_qa
安装以下库
pip install jupyter==1.1.1
pip install rdflib==7.1.1
pip install langchain-community==0.3.4
pip install langchain-openai==0.2.4
使用以下命令运行 Jupyter
jupyter notebook

指定本体

为了使 LLM 能够生成 SPARQL,它需要知道知识图谱模式(本体)。可以通过 OntotextGraphDBGraph 类的两个参数之一提供:
  • query_ontology:一个在 SPARQL 端点上执行并返回知识图谱模式语句的 CONSTRUCT 查询。我们建议您将本体存储在其自己的命名图中,这将使您更容易只获取相关的语句(如下面的示例)。不支持 DESCRIBE 查询,因为 DESCRIBE 返回对称简洁有界描述 (SCBD),即也包括传入的类链接。对于拥有数百万个实例的大图,这效率不高。请查看 github.com/eclipse-rdf4j/rdf4j/issues/4857
  • local_file:一个本地 RDF 本体文件。支持的 RDF 格式有 TurtleRDF/XMLJSON-LDN-TriplesNotation-3TrigTrixN-Quads
无论哪种情况,本体转储都应
  • 包含足够的关于类、属性、属性与类的关联(使用 rdfs:domain、schema:domainIncludes 或 OWL 限制)以及分类法(重要的个体)的信息。
  • 不包含过于冗长和不相关的定义和示例,这些定义和示例无助于 SPARQL 的构建。
from langchain_community.graphs import OntotextGraphDBGraph

# feeding the schema using a user construct query

graph = OntotextGraphDBGraph(
    query_endpoint="https://:7200/repositories/langchain",
    query_ontology="CONSTRUCT {?s ?p ?o} FROM [swapi.co/ontology/](https://swapi.co/ontology/) WHERE {?s ?p ?o}",
)
# feeding the schema using a local RDF file

graph = OntotextGraphDBGraph(
    query_endpoint="https://:7200/repositories/langchain",
    local_file="/path/to/langchain_graphdb_tutorial/starwars-ontology.nt",  # change the path here
)
无论哪种方式,本体(模式)都会以 Turtle 格式提供给 LLM,因为带有适当前缀的 Turtle 最紧凑,最容易让 LLM 记住。 星球大战本体有些不寻常,因为它包含了许多关于类的特定三元组,例如物种 :Aleena 居住在 <planet/38>,它们是 :Reptile 的子类,具有某些典型的特征(平均身高、平均寿命、肤色),并且特定的个体(角色)是该类的代表:
@prefix : [swapi.co/vocabulary/](https://swapi.co/vocabulary/) .
@prefix owl: [www.w3.org/2002/07/owl#](http://www.w3.org/2002/07/owl#) .
@prefix rdfs: [www.w3.org/2000/01/rdf-schema#](http://www.w3.org/2000/01/rdf-schema#) .
@prefix xsd: [www.w3.org/2001/XMLSchema#](http://www.w3.org/2001/XMLSchema#) .

:Aleena a owl:Class, :Species ;
    rdfs:label "Aleena" ;
    rdfs:isDefinedBy [swapi.co/ontology/](https://swapi.co/ontology/) ;
    rdfs:subClassOf :Reptile, :Sentient ;
    :averageHeight 80.0 ;
    :averageLifespan "79" ;
    :character [swapi.co/resource/aleena/47](https://swapi.co/resource/aleena/47) ;
    :film [swapi.co/resource/film/4](https://swapi.co/resource/film/4) ;
    :language "Aleena" ;
    :planet [swapi.co/resource/planet/38](https://swapi.co/resource/planet/38) ;
    :skinColor "blue", "gray" .

    ...

为了使本教程简单,我们使用未受保护的 GraphDB。如果 GraphDB 受保护,您应该在初始化 OntotextGraphDBGraph 之前设置环境变量“GRAPHDB_USERNAME”和“GRAPHDB_PASSWORD”。
os.environ["GRAPHDB_USERNAME"] = "graphdb-user"
os.environ["GRAPHDB_PASSWORD"] = "graphdb-password"

graph = OntotextGraphDBGraph(
    query_endpoint=...,
    query_ontology=...
)

针对星球大战数据集的问题回答

我们现在可以使用 OntotextGraphDBQAChain 提出一些问题。
import os

from langchain.chains import OntotextGraphDBQAChain
from langchain_openai import ChatOpenAI

# We'll be using an OpenAI model which requires an OpenAI API Key.
# However, other models are available as well:
# https://python.langchain.ac.cn/docs/integrations/chat/

# Set the environment variable `OPENAI_API_KEY` to your OpenAI API key
os.environ["OPENAI_API_KEY"] = "sk-***"

# Any available OpenAI model can be used here.
# We use 'gpt-4-1106-preview' because of the bigger context window.
# The 'gpt-4-1106-preview' model_name will deprecate in the future and will change to 'gpt-4-turbo' or similar,
# so be sure to consult with the OpenAI API https://platform.openai.com/docs/models for the correct naming.

chain = OntotextGraphDBQAChain.from_llm(
    ChatOpenAI(temperature=0, model_name="gpt-4-1106-preview"),
    graph=graph,
    verbose=True,
    allow_dangerous_requests=True,
)
我们来问一个简单的问题。
chain.invoke({chain.input_key: "What is the climate on Tatooine?"})[chain.output_key]


> Entering new OntotextGraphDBQAChain chain...
Generated SPARQL:
PREFIX : [swapi.co/vocabulary/](https://swapi.co/vocabulary/)
PREFIX rdfs: [www.w3.org/2000/01/rdf-schema#](http://www.w3.org/2000/01/rdf-schema#)

SELECT ?climate
WHERE {
  ?planet rdfs:label "Tatooine" ;
          :climate ?climate .
}

> Finished chain.
'The climate on Tatooine is arid.'
再来一个复杂一点的。
chain.invoke({chain.input_key: "What is the climate on Luke Skywalker's home planet?"})[
    chain.output_key
]
> Entering new OntotextGraphDBQAChain chain...
Generated SPARQL:
PREFIX : [swapi.co/vocabulary/](https://swapi.co/vocabulary/)
PREFIX owl: [www.w3.org/2002/07/owl#](http://www.w3.org/2002/07/owl#)
PREFIX rdfs: [www.w3.org/2000/01/rdf-schema#](http://www.w3.org/2000/01/rdf-schema#)
PREFIX xsd: [www.w3.org/2001/XMLSchema#](http://www.w3.org/2001/XMLSchema#)

SELECT ?climate
WHERE {
  ?character rdfs:label "Luke Skywalker" .
  ?character :homeworld ?planet .
  ?planet :climate ?climate .
}

> Finished chain.
"The climate on Luke Skywalker's home planet is arid."
我们还可以提出更复杂的问题,例如
chain.invoke(
    {
        chain.input_key: "What is the average box office revenue for all the Star Wars movies?"
    }
)[chain.output_key]
> Entering new OntotextGraphDBQAChain chain...
Generated SPARQL:
PREFIX : [swapi.co/vocabulary/](https://swapi.co/vocabulary/)
PREFIX xsd: [www.w3.org/2001/XMLSchema#](http://www.w3.org/2001/XMLSchema#)

SELECT (AVG(?boxOffice) AS ?averageBoxOfficeRevenue)
WHERE {
  ?film a :Film .
  ?film :boxOffice ?boxOfficeValue .
  BIND(xsd:decimal(?boxOfficeValue) AS ?boxOffice)
}


> Finished chain.
'The average box office revenue for all the Star Wars movies is approximately 754.1 million dollars.'

链修改器

Ontotext GraphDB QA 链允许提示优化,以进一步改进您的 QA 链并增强您应用的整体用户体验。

“SPARQL 生成”提示

此提示用于根据用户问题和知识图谱模式生成 SPARQL 查询。
  • sparql_generation_prompt 默认值:
      GRAPHDB_SPARQL_GENERATION_TEMPLATE = """
      Write a SPARQL SELECT query for querying a graph database.
      The ontology schema delimited by triple backticks in Turtle format is:
    
    Use only the classes and properties provided in the schema to construct the SPARQL query.
    Do not use any classes or properties that are not explicitly provided in the SPARQL query.
    Include all necessary prefixes.
    Do not include any explanations or apologies in your responses.
    Do not wrap the query in backticks.
    Do not include any text except the SPARQL query generated.
    The question delimited by triple backticks is:
    
    """
    GRAPHDB_SPARQL_GENERATION_PROMPT = PromptTemplate(
        input_variables=["schema", "prompt"],
        template=GRAPHDB_SPARQL_GENERATION_TEMPLATE,
    )
    

“SPARQL 修复”提示

有时,LLM 可能会生成带有语法错误或缺少前缀等的 SPARQL 查询。该链将尝试通过提示 LLM 更正它一定次数来弥补这一点。
  • sparql_fix_prompt 默认值:
      GRAPHDB_SPARQL_FIX_TEMPLATE = """
      This following SPARQL query delimited by triple backticks
    
    is not valid.
    The error delimited by triple backticks is
    
    Give me a correct version of the SPARQL query.
    Do not change the logic of the query.
    Do not include any explanations or apologies in your responses.
    Do not wrap the query in backticks.
    Do not include any text except the SPARQL query generated.
    The ontology schema delimited by triple backticks in Turtle format is:
    
    """
    
    GRAPHDB_SPARQL_FIX_PROMPT = PromptTemplate(
        input_variables=["error_message", "generated_sparql", "schema"],
        template=GRAPHDB_SPARQL_FIX_TEMPLATE,
    )
    
  • max_fix_retries 默认值:5

“回答”提示

此提示用于根据从数据库返回的结果和初始用户问题回答问题。默认情况下,LLM 被指示仅使用返回结果中的信息。如果结果集为空,LLM 应告知无法回答问题。
  • qa_prompt 默认值:
      GRAPHDB_QA_TEMPLATE = """Task: Generate a natural language response from the results of a SPARQL query.
      You are an assistant that creates well-written and human understandable answers.
      The information part contains the information provided, which you can use to construct an answer.
      The information provided is authoritative, you must never doubt it or try to use your internal knowledge to correct it.
      Make your response sound like the information is coming from an AI assistant, but don't add any information.
      Don't use internal knowledge to answer the question, just say you don't know if no information is available.
      Information:
      {context}
    
      Question: {prompt}
      Helpful Answer:"""
      GRAPHDB_QA_PROMPT = PromptTemplate(
          input_variables=["context", "prompt"], template=GRAPHDB_QA_TEMPLATE
      )
    
玩完 GraphDB 的 QA 后,您可以从包含 Docker compose 文件的目录中运行 docker compose down -v --remove-orphans 来关闭 Docker 环境。
以编程方式连接这些文档到 Claude、VSCode 等,通过 MCP 获取实时答案。
© . This site is unofficial and not affiliated with LangChain, Inc.