跳到主要内容
情境式AI提供最先进的RAG组件,专为准确可靠的企业AI应用程序设计。我们的LangChain集成公开了我们专业模型的独立API端点。
  • 基础语言模型 (GLM):世界上最基础的语言模型,旨在通过优先忠实于检索到的知识来最大程度地减少幻觉。GLM提供卓越的事实准确性,并附带内联归因,使其成为可靠性至关重要的企业RAG和代理应用程序的理想选择。
  • 指令遵循重排器:第一个遵循自定义指令的重排器,可根据特定标准(如新近度、来源或文档类型)智能地优先处理文档。我们的重排器在行业基准测试中表现优于竞争对手,解决了企业知识库中相互冲突的信息挑战。
情境式AI由RAG技术的发明者创立,其专业组件帮助创新团队加速开发可投入生产的RAG代理,提供具有卓越准确性的响应。

基础语言模型 (GLM)

基础语言模型 (GLM) 专门设计用于最大程度地减少企业RAG和代理应用程序中的幻觉。GLM 提供
  • 在FACTS基准测试中表现强劲,事实准确率达到88%(查看基准测试结果
  • 严格基于所提供知识来源的响应,并附带内联归因(阅读产品详情
  • 直接整合到生成响应中的精确来源引用
  • 优先考虑检索到的上下文而非参数知识(查看技术概述
  • 当信息不可用时明确承认不确定性
GLM可作为RAG管道中通用大型语言模型的替代品,极大地提高了任务关键型企业应用程序的可靠性。

指令遵循重排器

世界上第一个指令遵循重排器以空前的控制和准确性彻底改变了文档排名。主要功能包括
  • 自然语言指令,根据新近度、来源、元数据等优先级排序文档(查看工作原理
  • 在BEIR基准测试中表现卓越,得分61.2,大幅超越竞争对手(查看基准测试数据
  • 智能解决来自多个知识来源的冲突信息
  • 作为现有重排器的直接替代品,无缝集成
  • 通过自然语言命令动态控制文档排名
重排器擅长处理可能包含矛盾信息的企业知识库,允许您精确指定在各种场景中哪些来源应优先。

将情境式AI与LangChain结合使用

详情请参阅此处 此集成使您能够轻松将情境式AI的GLM和指令遵循重排器整合到您的LangChain工作流程中。GLM确保您的应用程序提供严格的基础响应,而重排器通过智能地优先处理最相关的文档,显著提高检索质量。 无论您是为受监管行业还是注重安全的环境构建应用程序,情境式AI都能提供您的企业用例所需的准确性、控制和可靠性。 立即开始免费试用,体验企业AI应用程序中最基础的语言模型和指令遵循重排器。

基础语言模型

# Integrating the Grounded Language Model
import getpass
import os

from langchain_contextual import ChatContextual

# Set credentials
if not os.getenv("CONTEXTUAL_AI_API_KEY"):
    os.environ["CONTEXTUAL_AI_API_KEY"] = getpass.getpass(
        "Enter your Contextual API key: "
    )

# initialize Contextual llm
llm = ChatContextual(
    model="v1",
    api_key="",
)
# include a system prompt (optional)
system_prompt = "You are a helpful assistant that uses all of the provided knowledge to answer the user's query to the best of your ability."

# provide your own knowledge from your knowledge-base here in an array of string
knowledge = [
    "There are 2 types of dogs in the world: good dogs and best dogs.",
    "There are 2 types of cats in the world: good cats and best cats.",
]

# create your message
messages = [
    ("human", "What type of cats are there in the world and what are the types?"),
]

# invoke the GLM by providing the knowledge strings, optional system prompt
# if you want to turn off the GLM's commentary, pass True to the `avoid_commentary` argument
ai_msg = llm.invoke(
    messages, knowledge=knowledge, system_prompt=system_prompt, avoid_commentary=True
)

print(ai_msg.content)
According to the information available, there are two types of cats in the world:

1. Good cats
2. Best cats

指令遵循重排器

import getpass
import os

from langchain_contextual import ContextualRerank

if not os.getenv("CONTEXTUAL_AI_API_KEY"):
    os.environ["CONTEXTUAL_AI_API_KEY"] = getpass.getpass(
        "Enter your Contextual API key: "
    )


api_key = ""
model = "ctxl-rerank-en-v1-instruct"

compressor = ContextualRerank(
    model=model,
    api_key=api_key,
)

from langchain_core.documents import Document

query = "What is the current enterprise pricing for the RTX 5090 GPU for bulk orders?"
instruction = "Prioritize internal sales documents over market analysis reports. More recent documents should be weighted higher. Enterprise portal content supersedes distributor communications."

document_contents = [
    "Following detailed cost analysis and market research, we have implemented the following changes: AI training clusters will see a 15% uplift in raw compute performance, enterprise support packages are being restructured, and bulk procurement programs (100+ units) for the RTX 5090 Enterprise series will operate on a $2,899 baseline.",
    "Enterprise pricing for the RTX 5090 GPU bulk orders (100+ units) is currently set at $3,100-$3,300 per unit. This pricing for RTX 5090 enterprise bulk orders has been confirmed across all major distribution channels.",
    "RTX 5090 Enterprise GPU requires 450W TDP and 20% cooling overhead.",
]

metadata = [
    {
        "Date": "January 15, 2025",
        "Source": "NVIDIA Enterprise Sales Portal",
        "Classification": "Internal Use Only",
    },
    {"Date": "11/30/2023", "Source": "TechAnalytics Research Group"},
    {
        "Date": "January 25, 2025",
        "Source": "NVIDIA Enterprise Sales Portal",
        "Classification": "Internal Use Only",
    },
]

documents = [
    Document(page_content=content, metadata=metadata[i])
    for i, content in enumerate(document_contents)
]
reranked_documents = compressor.compress_documents(
    query=query,
    instruction=instruction,
    documents=documents,
)

以编程方式连接这些文档到 Claude、VSCode 等,通过 MCP 获取实时答案。
© . This site is unofficial and not affiliated with LangChain, Inc.