跳到主要内容
本页面介绍如何在 LangChain 中使用 Log10

什么是 Log10?

Log10 是一个 开源 无代理 LLM 数据管理和应用程序开发平台,它允许您记录、调试和标记您的 LangChain 调用。

快速开始

  1. log10.io 创建您的免费帐户
  2. 将您的 LOG10_TOKENLOG10_ORG_ID 分别从设置和组织选项卡添加为环境变量。
  3. 同时将 LOG10_URL=https://log10.io 和您常用的 LLM API 密钥添加到您的环境中:例如 OPENAI_API_KEYANTHROPIC_API_KEY

如何为 LangChain 启用 Log10 数据管理

与 log10 的集成是一个简单的单行 log10_callback 集成,如下所示
from langchain_openai import ChatOpenAI
from langchain.messages import HumanMessage

from log10.langchain import Log10Callback
from log10.llm import Log10Config

log10_callback = Log10Callback(log10_config=Log10Config())

messages = [
    HumanMessage(content="You are a ping pong machine"),
    HumanMessage(content="Ping?"),
]

llm = ChatOpenAI(model="gpt-3.5-turbo", callbacks=[log10_callback])
Log10 + LangChain + 日志文档 更多详情 + 截图,包括自托管日志的说明

如何在 Log10 中使用标签

from langchain_openai import OpenAI
from langchain_community.chat_models import ChatAnthropic
from langchain_openai import ChatOpenAI
from langchain.messages import HumanMessage

from log10.langchain import Log10Callback
from log10.llm import Log10Config

log10_callback = Log10Callback(log10_config=Log10Config())

messages = [
    HumanMessage(content="You are a ping pong machine"),
    HumanMessage(content="Ping?"),
]

llm = ChatOpenAI(model="gpt-3.5-turbo", callbacks=[log10_callback], temperature=0.5, tags=["test"])
completion = llm.predict_messages(messages, tags=["foobar"])
print(completion)

llm = ChatAnthropic(model="claude-2", callbacks=[log10_callback], temperature=0.7, tags=["baz"])
llm.predict_messages(messages)
print(completion)

llm = OpenAI(model_name="gpt-3.5-turbo-instruct", callbacks=[log10_callback], temperature=0.5)
completion = llm.predict("You are a ping pong machine.\nPing?\n")
print(completion)
您还可以混合使用直接的 OpenAI 调用和 LangChain LLM 调用
import os
from log10.load import log10, log10_session
import openai
from langchain_openai import OpenAI

log10(openai)

with log10_session(tags=["foo", "bar"]):
    # Log a direct OpenAI call
    response = openai.Completion.create(
        model="text-ada-001",
        prompt="Where is the Eiffel Tower?",
        temperature=0,
        max_tokens=1024,
        top_p=1,
        frequency_penalty=0,
        presence_penalty=0,
    )
    print(response)

    # Log a call via LangChain
    llm = OpenAI(model_name="text-ada-001", temperature=0.5)
    response = llm.predict("You are a ping pong machine.\nPing?\n")
    print(response)

如何调试 LangChain 调用

调试示例 更多 LangChain 示例
以编程方式连接这些文档到 Claude、VSCode 等,通过 MCP 获取实时答案。
© . This site is unofficial and not affiliated with LangChain, Inc.