Google Vertex AI Search(以前称为Generative AI App Builder上的Enterprise Search)是Google Cloud提供的 Vertex AI 机器学习平台的一部分。Vertex AI Search使组织能够快速为客户和员工构建基于生成式 AI 的搜索引擎。它由各种Google 搜索技术支撑,包括语义搜索,通过使用自然语言处理和机器学习技术推断内容中的关系以及用户查询输入的意图,帮助提供比传统基于关键词的搜索技术更相关的结果。Vertex AI Search 还受益于 Google 在理解用户搜索方式方面的专业知识,并考虑内容相关性以对显示结果进行排序。
本笔记本演示了如何配置Vertex AI Search在Google Cloud Console中可用,也可以通过 API 进行企业工作流集成。
Vertex AI Search 并使用 Vertex AI Search 检索器。Vertex AI Search 检索器封装了 Python 客户端库,并使用它访问 搜索服务 API。 有关所有 VertexAISearchRetriever 功能和配置的详细文档,请参阅 API 参考。集成详情
设置
安装
您需要安装langchain-google-community 和 google-cloud-discoveryengine 包才能使用 Vertex AI Search 检索器。
配置对 Google Cloud 和 Vertex AI Search 的访问
自 2023 年 8 月起,Vertex AI Search 已全面可用,无需白名单。 在使用检索器之前,您需要完成以下步骤:创建搜索引擎并填充非结构化数据存储
- 按照 Vertex AI Search 入门指南 中的说明设置 Google Cloud 项目和 Vertex AI Search。
- 使用 Google Cloud Console 创建非结构化数据存储
- 使用
gs://cloud-samples-data/gen-app-builder/search/alphabet-investor-pdfsCloud Storage 文件夹中的示例 PDF 文档填充它。 - 确保使用
Cloud Storage(无元数据)选项。
- 使用
设置凭据以访问 Vertex AI Search API
Vertex AI Search 检索器使用的 Vertex AI Search 客户端库 为以编程方式向 Google Cloud 进行身份验证提供了高级语言支持。客户端库支持 应用默认凭据 (ADC);库会在一组定义的位置查找凭据,并使用这些凭据对 API 请求进行身份验证。通过 ADC,您可以在各种环境(例如本地开发或生产)中向应用程序提供凭据,而无需修改应用程序代码。 Google Colab 中,请使用google.colab.google.auth 进行身份验证,否则请遵循其中一种 支持的方法,以确保您的应用程序默认凭据已正确设置。配置和使用 Vertex AI Search 检索器
Vertex AI Search 检索器在langchain_google_community.VertexAISearchRetriever 类中实现。get_relevant_documents 方法返回一个 langchain.schema.Document 文档列表,其中每个文档的 page_content 字段都填充了文档内容。根据 Vertex AI Search 中使用的数据类型(网站、结构化或非结构化),page_content 字段的填充方式如下:
- 带高级索引的网站:与查询匹配的
提取式答案。metadata字段填充了从中提取片段或答案的文档的元数据(如果有)。 - 非结构化数据源:与查询匹配的
提取式片段或提取式答案。metadata字段填充了从中提取片段或答案的文档的元数据(如果有)。 - 结构化数据源:包含从结构化数据源返回的所有字段的字符串 JSON。
metadata字段填充了文档的元数据(如果有)。
提取式答案和提取式片段
提取式答案是随每个搜索结果返回的原文文本。它直接从原始文档中提取。提取式答案通常显示在网页顶部,为最终用户提供与查询相关的简短答案。提取式答案适用于网站和非结构化搜索。 提取式片段是随每个搜索结果返回的原文文本。提取式片段通常比提取式答案更详细。提取式片段可以作为查询的答案显示,也可以用于执行后处理任务,并作为大型语言模型的输入来生成答案或新文本。提取式片段适用于非结构化搜索。 有关提取式片段和提取式答案的更多信息,请参阅 产品文档。 注意:提取式片段需要启用 企业版 功能。 创建检索器实例时,您可以指定多个参数来控制要访问的数据存储以及如何处理自然语言查询,包括提取式答案和片段的配置。强制参数是
project_id- 您的 Google Cloud 项目 ID。location_id- 数据存储的位置。global(默认)useu
search_engine_id- 您要使用的搜索应用的 ID。(混合搜索必需)data_store_id- 您要使用的数据存储的 ID。
project_id、search_engine_id 和 data_store_id 参数可以在检索器的构造函数中显式提供,也可以通过环境变量 - PROJECT_ID、SEARCH_ENGINE_ID 和 DATA_STORE_ID 提供。 您还可以配置许多可选参数,包括:max_documents- 用于提供提取式片段或提取式答案的最大文档数。get_extractive_answers- 默认情况下,检索器配置为返回提取式片段。- 将此字段设置为
True以返回提取式答案。这仅在engine_data_type设置为0(非结构化)时使用。
- 将此字段设置为
max_extractive_answer_count- 每个搜索结果中返回的提取式答案的最大数量。- 最多返回 5 个答案。这仅在
engine_data_type设置为0(非结构化)时使用。
- 最多返回 5 个答案。这仅在
max_extractive_segment_count- 每个搜索结果中返回的提取式片段的最大数量。- 目前将返回一个片段。这仅在
engine_data_type设置为0(非结构化)时使用。
- 目前将返回一个片段。这仅在
filter- 基于数据存储中与文档关联的元数据的搜索结果过滤表达式。query_expansion_condition- 指定查询扩展应在何种条件下发生。0- 未指定的查询扩展条件。在这种情况下,服务器行为默认为禁用。1- 禁用查询扩展。即使 SearchResponse.total_size 为零,也只使用精确的搜索查询。2- 由 Search API 构建的自动查询扩展。
engine_data_type- 定义 Vertex AI Search 数据类型0- 非结构化数据1- 结构化数据2- 网站数据3- 混合搜索
GoogleCloudEnterpriseSearchRetriever 的迁移指南
在以前的版本中,此检索器称为 GoogleCloudEnterpriseSearchRetriever。 要更新到新的检索器,请进行以下更改:- 将导入从:
from langchain.retrievers import GoogleCloudEnterpriseSearchRetriever更改为 ->from langchain_google_community import VertexAISearchRetriever。 - 将所有类引用从
GoogleCloudEnterpriseSearchRetriever更改为 ->VertexAISearchRetriever。
实例化
配置和使用带提取式片段的非结构化数据检索器
配置和使用带提取式答案的非结构化数据检索器
配置和使用结构化数据检索器
配置和使用带高级网站索引的网站数据检索器
配置和使用混合数据检索器
配置和使用多轮搜索检索器
带后续问题的搜索 基于生成式 AI 模型,它与常规的非结构化数据搜索不同。用法
按照上述示例,我们使用invoke 发出单个查询。
API 参考
有关所有VertexAISearchRetriever 功能和配置的详细文档,请参阅 API 参考。
以编程方式连接这些文档到 Claude、VSCode 等,通过 MCP 获取实时答案。