跳到主要内容
此 JSON 分割器分割 JSON 数据,同时允许控制块大小。它深度优先遍历 JSON 数据并构建更小的 JSON 块。它尝试保持嵌套的 JSON 对象完整,但如果需要,会将其分割以将块保持在 `min_chunk_size` 和 `max_chunk_size` 之间。 如果值不是嵌套的 JSON,而是非常大的字符串,则该字符串将不会被分割。如果您需要对块大小进行严格限制,请考虑将其与对这些块的递归文本分割器结合使用。有一个可选的预处理步骤来分割列表,方法是首先将它们转换为 JSON(字典),然后按此方式分割它们。
  1. 文本如何分割:JSON 值。
  2. 块大小如何衡量:通过字符数。
pip install -qU langchain-text-splitters
首先我们加载一些 JSON 数据
import json

import requests

# This is a large nested json object and will be loaded as a python dict
json_data = requests.get("https://api.smith.langchain.com/openapi.json").json()

基本用法

指定 `max_chunk_size` 以限制块大小
from langchain_text_splitters import RecursiveJsonSplitter

splitter = RecursiveJsonSplitter(max_chunk_size=300)
要获取 JSON 块,请使用 `.split_json` 方法
# Recursively split json data - If you need to access/manipulate the smaller json chunks
json_chunks = splitter.split_json(json_data=json_data)

for chunk in json_chunks[:3]:
    print(chunk)
{'openapi': '3.1.0', 'info': {'title': 'LangSmith', 'version': '0.1.0'}, 'servers': [{'url': 'https://api.smith.langchain.com', 'description': 'LangSmith API endpoint.'}]}
{'paths': {'/api/v1/sessions/{session_id}': {'get': {'tags': ['tracer-sessions'], 'summary': 'Read Tracer Session', 'description': 'Get a specific session.', 'operationId': 'read_tracer_session_api_v1_sessions__session_id__get'}}}}
{'paths': {'/api/v1/sessions/{session_id}': {'get': {'security': [{'API Key': []}, {'Tenant ID': []}, {'Bearer Auth': []}]}}}}
要获取 LangChain Document 对象,请使用 `.create_documents` 方法
# The splitter can also output documents
docs = splitter.create_documents(texts=[json_data])

for doc in docs[:3]:
    print(doc)
page_content='{"openapi": "3.1.0", "info": {"title": "LangSmith", "version": "0.1.0"}, "servers": [{"url": "https://api.smith.langchain.com", "description": "LangSmith API endpoint."}]}'
page_content='{"paths": {"/api/v1/sessions/{session_id}": {"get": {"tags": ["tracer-sessions"], "summary": "Read Tracer Session", "description": "Get a specific session.", "operationId": "read_tracer_session_api_v1_sessions__session_id__get"}}}}'
page_content='{"paths": {"/api/v1/sessions/{session_id}": {"get": {"security": [{"API Key": []}, {"Tenant ID": []}, {"Bearer Auth": []}]}}}}'
或者使用 `.split_text` 直接获取字符串内容
texts = splitter.split_text(json_data=json_data)

print(texts[0])
print(texts[1])
{"openapi": "3.1.0", "info": {"title": "LangSmith", "version": "0.1.0"}, "servers": [{"url": "https://api.smith.langchain.com", "description": "LangSmith API endpoint."}]}
{"paths": {"/api/v1/sessions/{session_id}": {"get": {"tags": ["tracer-sessions"], "summary": "Read Tracer Session", "description": "Get a specific session.", "operationId": "read_tracer_session_api_v1_sessions__session_id__get"}}}}

如何管理列表内容的块大小

请注意,此示例中的一个块大于指定的 `max_chunk_size` (300)。查看其中一个较大的块,我们发现那里有一个列表对象
print([len(text) for text in texts][:10])
print()
print(texts[3])
[171, 231, 126, 469, 210, 213, 237, 271, 191, 232]

{"paths": {"/api/v1/sessions/{session_id}": {"get": {"parameters": [{"name": "session_id", "in": "path", "required": true, "schema": {"type": "string", "format": "uuid", "title": "Session Id"}}, {"name": "include_stats", "in": "query", "required": false, "schema": {"type": "boolean", "default": false, "title": "Include Stats"}}, {"name": "accept", "in": "header", "required": false, "schema": {"anyOf": [{"type": "string"}, {"type": "null"}], "title": "Accept"}}]}}}}
JSON 分割器默认不分割列表。 指定 `convert_lists=True` 来预处理 JSON,将列表内容转换为字典,其中 `index:item` 作为 `key:val` 对:
texts = splitter.split_text(json_data=json_data, convert_lists=True)
让我们看看块的大小。现在它们都小于最大值
print([len(text) for text in texts][:10])
[176, 236, 141, 203, 212, 221, 210, 213, 242, 291]
列表已转换为字典,但即使分割成许多块,也保留了所有必要的上下文信息
print(texts[1])
{"paths": {"/api/v1/sessions/{session_id}": {"get": {"tags": {"0": "tracer-sessions"}, "summary": "Read Tracer Session", "description": "Get a specific session.", "operationId": "read_tracer_session_api_v1_sessions__session_id__get"}}}}
# We can also look at the documents
docs[1]
Document(page_content='{"paths": {"/api/v1/sessions/{session_id}": {"get": {"tags": ["tracer-sessions"], "summary": "Read Tracer Session", "description": "Get a specific session.", "operationId": "read_tracer_session_api_v1_sessions__session_id__get"}}}}')

以编程方式连接这些文档到 Claude、VSCode 等,通过 MCP 获取实时答案。
© . This site is unofficial and not affiliated with LangChain, Inc.