跳到主要内容
演练如何使用 Elasticsearch 中托管的嵌入模型生成嵌入 实例化 ElasticsearchEmbeddings 类最简单的方法是
  • 如果您正在使用 Elastic Cloud,请使用 from_credentials 构造函数
  • 或者将 from_es_connection 构造函数与任何 Elasticsearch 集群一起使用
!pip -q install langchain-elasticsearch
from langchain_elasticsearch import ElasticsearchEmbeddings
# Define the model ID
model_id = "your_model_id"

使用 from_credentials 进行测试

这需要一个 Elastic Cloud cloud_id
# Instantiate ElasticsearchEmbeddings using credentials
embeddings = ElasticsearchEmbeddings.from_credentials(
    model_id,
    es_cloud_id="your_cloud_id",
    es_user="your_user",
    es_password="your_password",
)
# Create embeddings for multiple documents
documents = [
    "This is an example document.",
    "Another example document to generate embeddings for.",
]
document_embeddings = embeddings.embed_documents(documents)
# Print document embeddings
for i, embedding in enumerate(document_embeddings):
    print(f"Embedding for document {i + 1}: {embedding}")
# Create an embedding for a single query
query = "This is a single query."
query_embedding = embeddings.embed_query(query)
# Print query embedding
print(f"Embedding for query: {query_embedding}")

使用现有 Elasticsearch 客户端连接进行测试

这可以与任何 Elasticsearch 部署一起使用
# Create Elasticsearch connection
from elasticsearch import Elasticsearch

es_connection = Elasticsearch(
    hosts=["https://es_cluster_url:port"], basic_auth=("user", "password")
)
# Instantiate ElasticsearchEmbeddings using es_connection
embeddings = ElasticsearchEmbeddings.from_es_connection(
    model_id,
    es_connection,
)
# Create embeddings for multiple documents
documents = [
    "This is an example document.",
    "Another example document to generate embeddings for.",
]
document_embeddings = embeddings.embed_documents(documents)
# Print document embeddings
for i, embedding in enumerate(document_embeddings):
    print(f"Embedding for document {i + 1}: {embedding}")
# Create an embedding for a single query
query = "This is a single query."
query_embedding = embeddings.embed_query(query)
# Print query embedding
print(f"Embedding for query: {query_embedding}")

以编程方式连接这些文档到 Claude、VSCode 等,通过 MCP 获取实时答案。
© . This site is unofficial and not affiliated with LangChain, Inc.