跳到主要内容
Model2Vec 是一种将任何句子转换器转换为非常小的静态模型的技术。Model2vec 可用于生成嵌入。

设置

pip install -U langchain-community

实例化

确保已安装 model2vec
pip install -U model2vec

索引和检索

from langchain_community.embeddings import Model2vecEmbeddings
embeddings = Model2vecEmbeddings("minishlab/potion-base-8M")
query_text = "This is a test query."
query_result = embeddings.embed_query(query_text)
document_text = "This is a test document."
document_result = embeddings.embed_documents([document_text])

直接使用

以下是直接使用 model2vec 的方法
from model2vec import StaticModel

# Load a model from the HuggingFace hub (in this case the potion-base-8M model)
model = StaticModel.from_pretrained("minishlab/potion-base-8M")

# Make embeddings
embeddings = model.encode(["It's dangerous to go alone!", "It's a secret to everybody."])

# Make sequences of token embeddings
token_embeddings = model.encode_as_sequence(["It's dangerous to go alone!", "It's a secret to everybody."])

API 参考

欲了解更多信息,请查看 model2vec 的 GitHub 仓库
以编程方式连接这些文档到 Claude、VSCode 等,通过 MCP 获取实时答案。
© . This site is unofficial and not affiliated with LangChain, Inc.