跳到主要内容
这将帮助您开始使用 LangChain 的智谱AI嵌入模型。有关 ZhipuAIEmbeddings 功能和配置选项的详细文档,请参阅API 参考

概览

集成详情

设置

要访问智谱AI嵌入模型,您需要创建一个智谱AI账户,获取一个 API 密钥,并安装 zhipuai 集成包。

凭据

前往https://bigmodel.cn/注册智谱AI并生成一个 API 密钥。完成后,设置 ZHIPUAI_API_KEY 环境变量
import getpass
import os

if not os.getenv("ZHIPUAI_API_KEY"):
    os.environ["ZHIPUAI_API_KEY"] = getpass.getpass("Enter your ZhipuAI API key: ")
要启用模型调用的自动化跟踪,请设置您的 LangSmith API 密钥
os.environ["LANGSMITH_TRACING"] = "true"
os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")

安装

LangChain 智谱AI 集成存在于 zhipuai 包中
pip install -qU zhipuai
Note: you may need to restart the kernel to use updated packages.

实例化

现在我们可以实例化我们的模型对象并生成聊天完成
from langchain_community.embeddings import ZhipuAIEmbeddings

embeddings = ZhipuAIEmbeddings(
    model="embedding-3",
    # With the `embedding-3` class
    # of models, you can specify the size
    # of the embeddings you want returned.
    # dimensions=1024
)

索引和检索

嵌入模型通常用于检索增强生成 (RAG) 流程,既作为数据索引的一部分,也用于后续检索数据。有关更详细的说明,请参阅我们的RAG 教程 下面,我们将演示如何使用我们上面初始化的 embeddings 对象来索引和检索数据。在此示例中,我们将在 InMemoryVectorStore 中索引和检索一个示例文档。
# Create a vector store with a sample text
from langchain_core.vectorstores import InMemoryVectorStore

text = "LangChain is the framework for building context-aware reasoning applications"

vectorstore = InMemoryVectorStore.from_texts(
    [text],
    embedding=embeddings,
)

# Use the vectorstore as a retriever
retriever = vectorstore.as_retriever()

# Retrieve the most similar text
retrieved_documents = retriever.invoke("What is LangChain?")

# show the retrieved document's content
retrieved_documents[0].page_content
'LangChain is the framework for building context-aware reasoning applications'

直接使用

在底层,向量存储和检索器实现正在调用 embeddings.embed_documents(...)embeddings.embed_query(...) 分别为 from_texts 和检索 invoke 操作中使用的文本创建嵌入。 您可以直接调用这些方法来为自己的用例获取嵌入。

嵌入单个文本

您可以使用 embed_query 嵌入单个文本或文档
single_vector = embeddings.embed_query(text)
print(str(single_vector)[:100])  # Show the first 100 characters of the vector
[-0.022979736, 0.007785797, 0.04598999, 0.012741089, -0.01689148, 0.008277893, 0.016464233, 0.009246

嵌入多个文本

您可以使用 embed_documents 嵌入多个文本
text2 = (
    "LangGraph is a library for building stateful, multi-actor applications with LLMs"
)
two_vectors = embeddings.embed_documents([text, text2])
for vector in two_vectors:
    print(str(vector)[:100])  # Show the first 100 characters of the vector
[-0.022979736, 0.007785797, 0.04598999, 0.012741089, -0.01689148, 0.008277893, 0.016464233, 0.009246
[-0.02330017, -0.013916016, 0.00022411346, 0.017196655, -0.034240723, 0.011131287, 0.011497498, -0.0

API 参考

有关 ZhipuAIEmbeddings 功能和配置选项的详细文档,请参阅API 参考
以编程方式连接这些文档到 Claude、VSCode 等,通过 MCP 获取实时答案。
© . This site is unofficial and not affiliated with LangChain, Inc.