跳到主要内容
使用无监督学习微调 LLM 本身以记忆信息。 此工具需要支持微调的 LLM。目前,仅支持 langchain.llms import GradientLLM

导入

import os

from langchain.agents import AgentExecutor, AgentType, initialize_agent, load_tools
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import GradientLLM

设置环境变量 API 密钥

请务必从 Gradient AI 获取您的 API 密钥。您将获得 10 美元的免费积分以测试和微调不同的模型。
from getpass import getpass

if not os.environ.get("GRADIENT_ACCESS_TOKEN", None):
    # Access token under https://auth.gradient.ai/select-workspace
    os.environ["GRADIENT_ACCESS_TOKEN"] = getpass("gradient.ai access token:")
if not os.environ.get("GRADIENT_WORKSPACE_ID", None):
    # `ID` listed in `$ gradient workspace list`
    # also displayed after login at at https://auth.gradient.ai/select-workspace
    os.environ["GRADIENT_WORKSPACE_ID"] = getpass("gradient.ai workspace id:")
if not os.environ.get("GRADIENT_MODEL_ADAPTER_ID", None):
    # `ID` listed in `$ gradient model list --workspace-id "$GRADIENT_WORKSPACE_ID"`
    os.environ["GRADIENT_MODEL_ID"] = getpass("gradient.ai model id:")
可选:验证您的环境变量 GRADIENT_ACCESS_TOKENGRADIENT_WORKSPACE_ID 以获取当前部署的模型。

创建 GradientLLM 实例

您可以指定不同的参数,例如模型名称、生成的最大令牌数、温度等。
llm = GradientLLM(
    model_id=os.environ["GRADIENT_MODEL_ID"],
    # # optional: set new credentials, they default to environment variables
    # gradient_workspace_id=os.environ["GRADIENT_WORKSPACE_ID"],
    # gradient_access_token=os.environ["GRADIENT_ACCESS_TOKEN"],
)

加载工具

tools = load_tools(["memorize"], llm=llm)

初始化 Agent

agent = initialize_agent(
    tools,
    llm,
    agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
    verbose=True,
    # memory=ConversationBufferMemory(memory_key="chat_history", return_messages=True),
)

运行智能体

要求 Agent 记住一段文本。
agent.run(
    "Please remember the fact in detail:\nWith astonishing dexterity, Zara Tubikova set a world record by solving a 4x4 Rubik's Cube variation blindfolded in under 20 seconds, employing only their feet."
)
> Entering new AgentExecutor chain...
I should memorize this fact.
Action: Memorize
Action Input: Zara T
Observation: Train complete. Loss: 1.6853971333333335
Thought:I now know the final answer.
Final Answer: Zara Tubikova set a world

> Finished chain.
'Zara Tubikova set a world'

以编程方式连接这些文档到 Claude、VSCode 等,通过 MCP 获取实时答案。
© . This site is unofficial and not affiliated with LangChain, Inc.