跳到主要内容
本笔记本展示了如何使用 OpenGradient 工具包构建工具。该工具包使用户能够基于 OpenGradient 网络上的模型和工作流创建自定义工具。

设置

请确保您拥有 OpenGradient API 密钥,以便访问 OpenGradient 网络。如果您已经拥有 API 密钥,只需设置环境变量即可
!export OPENGRADIENT_PRIVATE_KEY="your-api-key"
如果您需要设置新的 API 密钥,请下载 opengradient SDK 并按照说明初始化新的配置。
!pip install opengradient
!opengradient config init

安装

此工具包位于 langchain-opengradient 包中
pip install -qU langchain-opengradient

实例化

现在我们可以使用之前的 API 密钥实例化我们的工具包。
from langchain_opengradient import OpenGradientToolkit

toolkit = OpenGradientToolkit(
    # Not required if you have already set the environment variable OPENGRADIENT_PRIVATE_KEY
    private_key="your-api-key"
)

构建您自己的工具

OpenGradientToolkit 提供了两种主要方法来创建自定义工具

1. 创建一个运行机器学习模型的工具

您可以创建利用部署在 OpenGradient 模型中心上的机器学习模型的工具。用户创建的模型可以通过 OpenGradient SDK 上传、推理并共享到模型中心。
import opengradient as og
from pydantic import BaseModel, Field


# Example 1: Simple tool with no input schema
def price_data_provider():
    """Function that provides input data to the model."""
    return {
        "open_high_low_close": [
            [2535.79, 2535.79, 2505.37, 2515.36],
            [2515.37, 2516.37, 2497.27, 2506.94],
            [2506.94, 2515, 2506.35, 2508.77],
            [2508.77, 2519, 2507.55, 2518.79],
            [2518.79, 2522.1, 2513.79, 2517.92],
            [2517.92, 2521.4, 2514.65, 2518.13],
            [2518.13, 2525.4, 2517.2, 2522.6],
            [2522.59, 2528.81, 2519.49, 2526.12],
            [2526.12, 2530, 2524.11, 2529.99],
            [2529.99, 2530.66, 2525.29, 2526],
        ]
    }


def format_volatility(inference_result):
    """Function that formats the model output."""
    return format(float(inference_result.model_output["Y"].item()), ".3%")


# Create the tool
volatility_tool = toolkit.create_run_model_tool(
    model_cid="QmRhcpDXfYCKsimTmJYrAVM4Bbvck59Zb2onj3MHv9Kw5N",
    tool_name="eth_volatility",
    model_input_provider=price_data_provider,
    model_output_formatter=format_volatility,
    tool_description="Generates volatility measurement for ETH/USDT trading pair",
    inference_mode=og.InferenceMode.VANILLA,
)


# Example 2: Tool with input schema from the agent
class TokenInputSchema(BaseModel):
    token: str = Field(description="Token name (ethereum or bitcoin)")


def token_data_provider(**inputs):
    """Dynamic function that changes behavior based on agent input."""
    token = inputs.get("token")
    if token == "bitcoin":
        return {"price_series": [100001.1, 100013.2, 100149.2, 99998.1]}
    else:  # ethereum
        return {"price_series": [2010.1, 2012.3, 2020.1, 2019.2]}


# Create the tool with schema
token_tool = toolkit.create_run_model_tool(
    model_cid="QmZdSfHWGJyzBiB2K98egzu3MypPcv4R1ASypUxwZ1MFUG",
    tool_name="token_volatility",
    model_input_provider=token_data_provider,
    model_output_formatter=lambda x: format(float(x.model_output["std"].item()), ".3%"),
    tool_input_schema=TokenInputSchema,
    tool_description="Measures return volatility for a specified token",
)

# Add tools to the toolkit
toolkit.add_tool(volatility_tool)
toolkit.add_tool(token_tool)

2. 创建一个读取工作流结果的工具

读取工作流是定期运行存储在智能合约中带有实时预言机数据的模型的调度推理。更多信息可在此处找到:此处 您可以创建读取工作流智能合约结果的工具:
# Create a tool to read from a workflow
forecast_tool = toolkit.create_read_workflow_tool(
    workflow_contract_address="0x58826c6dc9A608238d9d57a65bDd50EcaE27FE99",
    tool_name="ETH_Price_Forecast",
    tool_description="Reads latest forecast for ETH price from deployed workflow",
    output_formatter=lambda x: f"Price change forecast: {format(float(x.numbers['regression_output'].item()), '.2%')}",
)

# Add the tool to the toolkit
toolkit.add_tool(forecast_tool)

工具

使用内置的 get_tools() 方法查看 OpenGradient 工具包中可用的工具列表。
tools = toolkit.get_tools()

# View tools
for tool in tools:
    print(tool)

在代理中使用

以下是如何将您的 OpenGradient 工具与 LangChain 代理一起使用
from langchain_openai import ChatOpenAI
from langchain.agents import create_agent


# Initialize LLM
model = ChatOpenAI(model="gpt-4o")

# Create tools from the toolkit
tools = toolkit.get_tools()

# Create agent
agent_executor = create_agent(model, tools)

# Example query for the agent
example_query = "What's the current volatility of ETH?"

# Execute the agent
events = agent_executor.stream(
    {"messages": [("user", example_query)]},
    stream_mode="values",
)
for event in events:
    event["messages"][-1].pretty_print()
以下是所有内容组合在一起的示例输出
================================ Human Message =================================

What's the current volatility of ETH?
================================== Ai Message ==================================
Tool Calls:
  eth_volatility (chatcmpl-tool-d66ab9ee8f2c40e5a2634d90c7aeb17d)
 Call ID: chatcmpl-tool-d66ab9ee8f2c40e5a2634d90c7aeb17d
  Args:
================================= Tool Message =================================
Name: eth_volatility

0.038%
================================== Ai Message ==================================

The current volatility of the ETH/USDT trading pair is 0.038%.

API 参考

请参阅 Github 页面了解更多详情。
以编程方式连接这些文档到 Claude、VSCode 等,通过 MCP 获取实时答案。
© . This site is unofficial and not affiliated with LangChain, Inc.