跳到主要内容
本笔记本向您展示如何利用此集成的向量数据库来存储集合中的文档,创建索引并使用近似最近邻算法(例如 COS(余弦距离)、L2(欧几里德距离)和 IP(内积))执行向量搜索查询,以查找靠近查询向量的文档。 Azure Cosmos DB 是为 OpenAI 的 ChatGPT 服务提供支持的数据库。它提供个位数毫秒的响应时间、自动即时缩放以及任何规模下有保证的速度。 适用于 MongoDB vCore 的 Azure Cosmos DB 为开发人员提供了一个完全托管的 MongoDB 兼容数据库服务,用于使用熟悉的架构构建现代应用程序。您可以通过将应用程序指向适用于 MongoDB vCore 帐户的连接字符串来应用您的 MongoDB 经验并继续使用您喜欢的 MongoDB 驱动程序、SDK 和工具。 立即注册以获取终身免费访问权限,立即开始。
%pip install -qU pymongo langchain-openai langchain-azure-ai
Note: you may need to restart the kernel to use updated packages.
import os

CONNECTION_STRING = "YOUR_CONNECTION_STRING"
INDEX_NAME = "langchain-test-index"
NAMESPACE = "langchain_test_db.langchain_test_collection"
DB_NAME, COLLECTION_NAME = NAMESPACE.split(".")
我们要使用 AzureOpenAIEmbeddings,因此我们需要设置 Azure OpenAI API 密钥以及其他环境变量。
# Set up the OpenAI environment variables

os.environ["AZURE_OPENAI_API_KEY"] = "YOUR_AZURE_OPENAI_API_KEY"
os.environ["AZURE_OPENAI_ENDPOINT"] = "YOUR_AZURE_OPENAI_ENDPOINT"
os.environ["AZURE_OPENAI_API_VERSION"] = "2023-05-15"
os.environ["OPENAI_EMBEDDINGS_MODEL_NAME"] = "text-embedding-ada-002"
os.environ["OPENAI_EMBEDDINGS_DEPLOYMENT"] = "text-embedding-ada-002"
现在,我们需要将文档加载到集合中,创建索引,然后针对索引运行查询以检索匹配项。 如果您对某些参数有疑问,请参阅文档
from langchain_community.document_loaders import TextLoader
from langchain_azure_ai.vectorstores.azure_cosmos_db_mongo_vcore import (
    AzureCosmosDBMongoVCoreVectorSearch,
    CosmosDBSimilarityType,
    CosmosDBVectorSearchType,
)
from langchain_openai import AzureOpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter

SOURCE_FILE_NAME = "../../how_to/state_of_the_union.txt"

loader = TextLoader(SOURCE_FILE_NAME)
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)

# OpenAI Settings
model_deployment = os.getenv(
    "OPENAI_EMBEDDINGS_DEPLOYMENT", "smart-agent-embedding-ada"
)
model_name = os.getenv("OPENAI_EMBEDDINGS_MODEL_NAME", "text-embedding-ada-002")


openai_embeddings: AzureOpenAIEmbeddings = AzureOpenAIEmbeddings(
    model=model_name, chunk_size=1
)
docs[0]
Document(metadata={'source': '../../how_to/state_of_the_union.txt'}, page_content='Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans.  \n\nLast year COVID-19 kept us apart. This year we are finally together again. \n\nTonight, we meet as Democrats Republicans and Independents. But most importantly as Americans. \n\nWith a duty to one another to the American people to the Constitution. \n\nAnd with an unwavering resolve that freedom will always triumph over tyranny. \n\nSix days ago, Russia’s Vladimir Putin sought to shake the foundations of the free world thinking he could make it bend to his menacing ways. But he badly miscalculated. \n\nHe thought he could roll into Ukraine and the world would roll over. Instead he met a wall of strength he never imagined. \n\nHe met the Ukrainian people. \n\nFrom President Zelenskyy to every Ukrainian, their fearlessness, their courage, their determination, inspires the world.')
from pymongo import MongoClient

# INDEX_NAME = "izzy-test-index-2"
# NAMESPACE = "izzy_test_db.izzy_test_collection"
# DB_NAME, COLLECTION_NAME = NAMESPACE.split(".")

client: MongoClient = MongoClient(CONNECTION_STRING)
collection = client[DB_NAME][COLLECTION_NAME]

model_deployment = os.getenv(
    "OPENAI_EMBEDDINGS_DEPLOYMENT", "smart-agent-embedding-ada"
)
model_name = os.getenv("OPENAI_EMBEDDINGS_MODEL_NAME", "text-embedding-ada-002")

vectorstore = AzureCosmosDBMongoVCoreVectorSearch.from_documents(
    docs,
    openai_embeddings,
    collection=collection,
    index_name=INDEX_NAME,
)

# Read more about these variables in detail here. https://learn.microsoft.com/en-us/azure/cosmos-db/mongodb/vcore/vector-search
num_lists = 100
dimensions = 1536
similarity_algorithm = CosmosDBSimilarityType.COS
kind = CosmosDBVectorSearchType.VECTOR_IVF
m = 16
ef_construction = 64
ef_search = 40
score_threshold = 0.1

vectorstore.create_index(
    num_lists, dimensions, similarity_algorithm, kind, m, ef_construction
)

"""
# DiskANN vectorstore
maxDegree = 40
dimensions = 1536
similarity_algorithm = CosmosDBSimilarityType.COS
kind = CosmosDBVectorSearchType.VECTOR_DISKANN
lBuild = 20

vectorstore.create_index(
            dimensions=dimensions,
            similarity=similarity_algorithm,
            kind=kind ,
            max_degree=maxDegree,
            l_build=lBuild,
        )

# -----------------------------------------------------------

# HNSW vectorstore
dimensions = 1536
similarity_algorithm = CosmosDBSimilarityType.COS
kind = CosmosDBVectorSearchType.VECTOR_HNSW
m = 16
ef_construction = 64

vectorstore.create_index(
            dimensions=dimensions,
            similarity=similarity_algorithm,
            kind=kind ,
            m=m,
            ef_construction=ef_construction,
        )
"""
'\n# DiskANN vectorstore\nmaxDegree = 40\ndimensions = 1536\nsimilarity_algorithm = CosmosDBSimilarityType.COS\nkind = CosmosDBVectorSearchType.VECTOR_DISKANN\nlBuild = 20\n\nvectorstore.create_index(\n            dimensions=dimensions,\n            similarity=similarity_algorithm,\n            kind=kind ,\n            max_degree=maxDegree,\n            l_build=lBuild,\n        )\n\n# -----------------------------------------------------------\n\n# HNSW vectorstore\ndimensions = 1536\nsimilarity_algorithm = CosmosDBSimilarityType.COS\nkind = CosmosDBVectorSearchType.VECTOR_HNSW\nm = 16\nef_construction = 64\n\nvectorstore.create_index(\n            dimensions=dimensions,\n            similarity=similarity_algorithm,\n            kind=kind ,\n            m=m,\n            ef_construction=ef_construction,\n        )\n'
# perform a similarity search between the embedding of the query and the embeddings of the documents
query = "What did the president say about Ketanji Brown Jackson"
docs = vectorstore.similarity_search(query)
print(docs[0].page_content)
Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections.

Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service.

One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court.

And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.
文档加载并创建索引后,您现在可以直接实例化向量存储并针对索引运行查询
vectorstore = AzureCosmosDBMongoVCoreVectorSearch.from_connection_string(
    CONNECTION_STRING, NAMESPACE, openai_embeddings, index_name=INDEX_NAME
)

# perform a similarity search between a query and the ingested documents
query = "What did the president say about Ketanji Brown Jackson"
docs = vectorstore.similarity_search(query)

print(docs[0].page_content)
Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections.

Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service.

One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court.

And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.
vectorstore = AzureCosmosDBMongoVCoreVectorSearch(
    collection, openai_embeddings, index_name=INDEX_NAME
)

# perform a similarity search between a query and the ingested documents
query = "What did the president say about Ketanji Brown Jackson"
docs = vectorstore.similarity_search(query)

print(docs[0].page_content)
Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections.

Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service.

One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court.

And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.

带过滤器的向量搜索(预览版)

适用于 MongoDB 的 Azure Cosmos DB 支持使用 $lt$lte$eq$neq$gte$gt$in$nin$regex 进行预过滤。要使用此功能,请在 Azure 订阅的“预览功能”选项卡中启用“过滤向量搜索”。在此处了解有关预览功能的更多信息
# Create a filter index
vectorstore.create_filter_index(
    property_to_filter="metadata.source", index_name="filter_index"
)
{'raw': {'defaultShard': {'numIndexesBefore': 3,
   'numIndexesAfter': 4,
   'createdCollectionAutomatically': False,
   'ok': 1}},
 'ok': 1}
query = "What did the president say about Ketanji Brown Jackson"
docs = vectorstore.similarity_search(
    query, pre_filter={"metadata.source": {"$ne": "filter content"}}
)
len(docs)
4
docs = vectorstore.similarity_search(
    query,
    pre_filter={"metadata.source": {"$ne": "../../how_to/state_of_the_union.txt"}},
)
len(docs)
0

以编程方式连接这些文档到 Claude、VSCode 等,通过 MCP 获取实时答案。
© . This site is unofficial and not affiliated with LangChain, Inc.