跳到主要内容
中国移动云 VectorSearch 是一款全托管、企业级分布式搜索分析服务。中国移动云 VectorSearch 为结构化/非结构化数据提供低成本、高性能、高可靠的检索分析平台级产品服务。作为向量数据库,它支持多种索引类型和相似性距离方法。
要使用此集成,您需要安装 langchain-community,命令为 pip install -qU langchain-community 本笔记本演示了如何使用 ECloud ElasticSearch VectorStore 相关功能。要运行,您应该有一个正在运行的 中国移动云 VectorSearch 实例: 阅读帮助文档,快速熟悉和配置中国移动云 ElasticSearch 实例。 实例启动并运行后,请按照以下步骤分割文档、获取嵌入、连接到百度云 ElasticSearch 实例、索引文档并执行向量检索。
#!pip install elasticsearch == 7.10.1
首先,我们要使用 OpenAIEmbeddings,所以必须获取 OpenAI API 密钥。
import getpass
import os

if "OPENAI_API_KEY" not in os.environ:
    os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
其次,分割文档并获取嵌入。
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import EcloudESVectorStore
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
loader = TextLoader("../../../state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)

embeddings = OpenAIEmbeddings()

ES_URL = "https://:9200"
USER = "your user name"
PASSWORD = "your password"
indexname = "your index name"
然后,索引文档
docsearch = EcloudESVectorStore.from_documents(
    docs,
    embeddings,
    es_url=ES_URL,
    user=USER,
    password=PASSWORD,
    index_name=indexname,
    refresh_indices=True,
)
最后,查询和检索数据
query = "What did the president say about Ketanji Brown Jackson"
docs = docsearch.similarity_search(query, k=10)
print(docs[0].page_content)
常用案例
def test_dense_float_vectore_lsh_cosine() -> None:
    """
    Test indexing with vectore type knn_dense_float_vector and  model-similarity of lsh-cosine
    this mapping is compatible with model of exact and similarity of l2/cosine
    this mapping is compatible with model of lsh and similarity of cosine
    """
    docsearch = EcloudESVectorStore.from_documents(
        docs,
        embeddings,
        es_url=ES_URL,
        user=USER,
        password=PASSWORD,
        index_name=indexname,
        refresh_indices=True,
        text_field="my_text",
        vector_field="my_vec",
        vector_type="knn_dense_float_vector",
        vector_params={"model": "lsh", "similarity": "cosine", "L": 99, "k": 1},
    )

    docs = docsearch.similarity_search(
        query,
        k=10,
        search_params={
            "model": "exact",
            "vector_field": "my_vec",
            "text_field": "my_text",
        },
    )
    print(docs[0].page_content)

    docs = docsearch.similarity_search(
        query,
        k=10,
        search_params={
            "model": "exact",
            "similarity": "l2",
            "vector_field": "my_vec",
            "text_field": "my_text",
        },
    )
    print(docs[0].page_content)

    docs = docsearch.similarity_search(
        query,
        k=10,
        search_params={
            "model": "exact",
            "similarity": "cosine",
            "vector_field": "my_vec",
            "text_field": "my_text",
        },
    )
    print(docs[0].page_content)

    docs = docsearch.similarity_search(
        query,
        k=10,
        search_params={
            "model": "lsh",
            "similarity": "cosine",
            "candidates": 10,
            "vector_field": "my_vec",
            "text_field": "my_text",
        },
    )
    print(docs[0].page_content)
带筛选条件的案例
def test_dense_float_vectore_exact_with_filter() -> None:
    """
    Test indexing with vectore type knn_dense_float_vector and default model/similarity
    this mapping is compatible with model of exact and similarity of l2/cosine
    """
    docsearch = EcloudESVectorStore.from_documents(
        docs,
        embeddings,
        es_url=ES_URL,
        user=USER,
        password=PASSWORD,
        index_name=indexname,
        refresh_indices=True,
        text_field="my_text",
        vector_field="my_vec",
        vector_type="knn_dense_float_vector",
    )
    # filter={"match_all": {}} ,default
    docs = docsearch.similarity_search(
        query,
        k=10,
        filter={"match_all": {}},
        search_params={
            "model": "exact",
            "vector_field": "my_vec",
            "text_field": "my_text",
        },
    )
    print(docs[0].page_content)

    # filter={"term": {"my_text": "Jackson"}}
    docs = docsearch.similarity_search(
        query,
        k=10,
        filter={"term": {"my_text": "Jackson"}},
        search_params={
            "model": "exact",
            "vector_field": "my_vec",
            "text_field": "my_text",
        },
    )
    print(docs[0].page_content)

    # filter={"term": {"my_text": "president"}}
    docs = docsearch.similarity_search(
        query,
        k=10,
        filter={"term": {"my_text": "president"}},
        search_params={
            "model": "exact",
            "similarity": "l2",
            "vector_field": "my_vec",
            "text_field": "my_text",
        },
    )
    print(docs[0].page_content)

以编程方式连接这些文档到 Claude、VSCode 等,通过 MCP 获取实时答案。
© . This site is unofficial and not affiliated with LangChain, Inc.