跳到主要内容
Facebook AI 相似性搜索 (FAISS) 是一个用于高效的密集向量相似性搜索和聚类的库。它包含的算法可以在任何大小的向量集中进行搜索,甚至可以处理不适合内存的向量集。它还包括用于评估和参数调整的支持代码。 请参阅 FAISS 库 论文。
您可以在 此页面 找到 FAISS 文档。 本笔记本演示了如何使用与 FAISS 向量数据库相关的功能。它将展示此集成特有的功能。阅读后,探索 相关用例页面 可能很有用,以了解如何将此向量存储作为更大链的一部分使用。

设置

该集成位于 langchain-community 包中。我们还需要安装 faiss 包本身。我们可以通过以下方式安装它们: 请注意,如果您想使用 GPU 加速版本,您也可以安装 faiss-gpu
pip install -qU langchain-community faiss-cpu
如果您想获得模型调用的最佳自动化跟踪,您还可以通过取消注释下方来设置您的 LangSmith API 密钥
os.environ["LANGSMITH_TRACING"] = "true"
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass()

初始化

# | output: false
# | echo: false
from langchain_openai import OpenAIEmbeddings

embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
import faiss
from langchain_community.docstore.in_memory import InMemoryDocstore
from langchain_community.vectorstores import FAISS

index = faiss.IndexFlatL2(len(embeddings.embed_query("hello world")))

vector_store = FAISS(
    embedding_function=embeddings,
    index=index,
    docstore=InMemoryDocstore(),
    index_to_docstore_id={},
)

管理向量存储

向向量存储添加项目

from uuid import uuid4

from langchain_core.documents import Document

document_1 = Document(
    page_content="I had chocolate chip pancakes and scrambled eggs for breakfast this morning.",
    metadata={"source": "tweet"},
)

document_2 = Document(
    page_content="The weather forecast for tomorrow is cloudy and overcast, with a high of 62 degrees.",
    metadata={"source": "news"},
)

document_3 = Document(
    page_content="Building an exciting new project with LangChain - come check it out!",
    metadata={"source": "tweet"},
)

document_4 = Document(
    page_content="Robbers broke into the city bank and stole $1 million in cash.",
    metadata={"source": "news"},
)

document_5 = Document(
    page_content="Wow! That was an amazing movie. I can't wait to see it again.",
    metadata={"source": "tweet"},
)

document_6 = Document(
    page_content="Is the new iPhone worth the price? Read this review to find out.",
    metadata={"source": "website"},
)

document_7 = Document(
    page_content="The top 10 soccer players in the world right now.",
    metadata={"source": "website"},
)

document_8 = Document(
    page_content="LangGraph is the best framework for building stateful, agentic applications!",
    metadata={"source": "tweet"},
)

document_9 = Document(
    page_content="The stock market is down 500 points today due to fears of a recession.",
    metadata={"source": "news"},
)

document_10 = Document(
    page_content="I have a bad feeling I am going to get deleted :(",
    metadata={"source": "tweet"},
)

documents = [
    document_1,
    document_2,
    document_3,
    document_4,
    document_5,
    document_6,
    document_7,
    document_8,
    document_9,
    document_10,
]
uuids = [str(uuid4()) for _ in range(len(documents))]

vector_store.add_documents(documents=documents, ids=uuids)
['22f5ce99-cd6f-4e0c-8dab-664128307c72',
 'dc3f061b-5f88-4fa1-a966-413550c51891',
 'd33d890b-baad-47f7-b7c1-175f5f7b4e59',
 '6e6c01d2-6020-4a7b-95da-ef43d43f01b5',
 'e677223d-ad75-4c1a-bef6-b5912bd1de03',
 '47e2a168-6462-4ed2-b1d9-d9edfd7391d6',
 '1e4d66d6-e155-4891-9212-f7be97f36c6a',
 'c0663096-e1a5-4665-b245-1c2e6c4fb653',
 '8297474a-7f7c-4006-9865-398c1781b1bc',
 '44e4be03-0a8d-4316-b3c4-f35f4bb2b532']

从向量存储中删除项目

vector_store.delete(ids=[uuids[-1]])
True

查询向量存储

一旦您的向量存储被创建并添加了相关文档,您很可能希望在链或代理运行期间查询它。

直接查询

执行带有元数据过滤的简单相似性搜索可以如下操作
results = vector_store.similarity_search(
    "LangChain provides abstractions to make working with LLMs easy",
    k=2,
    filter={"source": "tweet"},
)
for res in results:
    print(f"* {res.page_content} [{res.metadata}]")
* Building an exciting new project with LangChain - come check it out! [{'source': 'tweet'}]
* LangGraph is the best framework for building stateful, agentic applications! [{'source': 'tweet'}]
支持一些 MongoDB 查询和投影操作符,用于更高级的元数据过滤。目前支持的操作符列表如下:
  • $eq(等于)
  • $neq(不等于)
  • $gt(大于)
  • $lt(小于)
  • $gte(大于或等于)
  • $lte(小于或等于)
  • $in(在列表中)
  • $nin(不在列表中)
  • $and(所有条件都必须匹配)
  • $or(任何条件都必须匹配)
  • $not(条件取反)
执行上述带高级元数据过滤的相似性搜索可以按如下方式进行:
results = vector_store.similarity_search(
    "LangChain provides abstractions to make working with LLMs easy",
    k=2,
    filter={"source": {"$eq": "tweet"}},
)
for res in results:
    print(f"* {res.page_content} [{res.metadata}]")
* Building an exciting new project with LangChain - come check it out! [{'source': 'tweet'}]
* LangGraph is the best framework for building stateful, agentic applications! [{'source': 'tweet'}]

带分数的相似性搜索

您还可以带分数搜索
results = vector_store.similarity_search_with_score(
    "Will it be hot tomorrow?", k=1, filter={"source": "news"}
)
for res, score in results:
    print(f"* [SIM={score:3f}] {res.page_content} [{res.metadata}]")
* [SIM=0.893688] The weather forecast for tomorrow is cloudy and overcast, with a high of 62 degrees. [{'source': 'news'}]

其他搜索方法

还有多种其他方式来搜索 FAISS 向量存储。有关这些方法的完整列表,请参阅 API 参考

通过转换为检索器进行查询

您还可以将向量存储转换为检索器,以便在您的链中更轻松地使用。
retriever = vector_store.as_retriever(search_type="mmr", search_kwargs={"k": 1})
retriever.invoke("Stealing from the bank is a crime", filter={"source": "news"})
[Document(metadata={'source': 'news'}, page_content='Robbers broke into the city bank and stole $1 million in cash.')]

用于检索增强生成的使用

有关如何将此向量存储用于检索增强生成 (RAG) 的指南,请参阅以下部分

保存和加载

您还可以保存和加载 FAISS 索引。这很有用,这样您就不必每次使用时都重新创建它。
vector_store.save_local("faiss_index")

new_vector_store = FAISS.load_local(
    "faiss_index", embeddings, allow_dangerous_deserialization=True
)

docs = new_vector_store.similarity_search("qux")
docs[0]
Document(metadata={'source': 'tweet'}, page_content='Building an exciting new project with LangChain - come check it out!')

合并

您还可以合并两个 FAISS 向量存储。
db1 = FAISS.from_texts(["foo"], embeddings)
db2 = FAISS.from_texts(["bar"], embeddings)

db1.docstore._dict
{'b752e805-350e-4cf5-ba54-0883d46a3a44': Document(page_content='foo')}
db2.docstore._dict
{'08192d92-746d-4cd1-b681-bdfba411f459': Document(page_content='bar')}
db1.merge_from(db2)
db1.docstore._dict
{'b752e805-350e-4cf5-ba54-0883d46a3a44': Document(page_content='foo'),
 '08192d92-746d-4cd1-b681-bdfba411f459': Document(page_content='bar')}

API 参考

有关所有 FAISS 向量存储功能和配置的详细文档,请查阅 API 参考:python.langchain.com/api_reference/community/vectorstores/langchain_community.vectorstores.faiss.FAISS.html
以编程方式连接这些文档到 Claude、VSCode 等,通过 MCP 获取实时答案。
© . This site is unofficial and not affiliated with LangChain, Inc.