跳到主要内容
使用 postgres 作为后端并利用 pgvector 扩展的 LangChain 向量存储抽象实现。
代码位于一个名为 langchain-postgres 的集成包中。

状态

此代码已从 langchain-community 移植到一个名为 langchain-postgres 的专用包中。已进行以下更改:
  • langchain-postgres 仅适用于 psycopg3。请将您的连接字符串从 postgresql+psycopg2://... 更新为 postgresql+psycopg://langchain:langchain@...(是的,驱动程序名称是 psycopg 而不是 psycopg3,但它将使用 psycopg3。)
  • 嵌入存储和集合的模式已更改,以使 add_documents 能够正确处理用户指定的 ID。
  • 现在必须传递一个显式的连接对象。
目前,尚无支持轻松数据迁移以应对模式更改的机制。因此,向量存储中的任何模式更改都将要求用户重新创建表并重新添加文档。如果这是一个问题,请使用不同的向量存储。如果不是,此实现应该适合您的用例。

设置

首先下载合作伙伴包
pip install -qU langchain-postgres
您可以运行以下命令启动一个带有 pgvector 扩展的 postgres 容器:
%docker run --name pgvector-container -e POSTGRES_USER=langchain -e POSTGRES_PASSWORD=langchain -e POSTGRES_DB=langchain -p 6024:5432 -d pgvector/pgvector:pg16

凭据

运行此 notebook 不需要凭据,只需确保您已下载 langchain-postgres 包并正确启动了 postgres 容器。 如果您想获得一流的模型调用自动化跟踪,您还可以通过取消注释下方内容来设置您的 LangSmith API 密钥:
os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
os.environ["LANGSMITH_TRACING"] = "true"

实例化

# | output: false
# | echo: false
from langchain_openai import OpenAIEmbeddings

embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
from langchain_postgres import PGVector

# See docker command above to launch a postgres instance with pgvector enabled.
connection = "postgresql+psycopg://langchain:langchain@localhost:6024/langchain"  # Uses psycopg3!
collection_name = "my_docs"

vector_store = PGVector(
    embeddings=embeddings,
    collection_name=collection_name,
    connection=connection,
    use_jsonb=True,
)

管理向量存储

向向量存储添加项目

请注意,通过 ID 添加文档将覆盖任何匹配该 ID 的现有文档。
from langchain_core.documents import Document

docs = [
    Document(
        page_content="there are cats in the pond",
        metadata={"id": 1, "location": "pond", "topic": "animals"},
    ),
    Document(
        page_content="ducks are also found in the pond",
        metadata={"id": 2, "location": "pond", "topic": "animals"},
    ),
    Document(
        page_content="fresh apples are available at the market",
        metadata={"id": 3, "location": "market", "topic": "food"},
    ),
    Document(
        page_content="the market also sells fresh oranges",
        metadata={"id": 4, "location": "market", "topic": "food"},
    ),
    Document(
        page_content="the new art exhibit is fascinating",
        metadata={"id": 5, "location": "museum", "topic": "art"},
    ),
    Document(
        page_content="a sculpture exhibit is also at the museum",
        metadata={"id": 6, "location": "museum", "topic": "art"},
    ),
    Document(
        page_content="a new coffee shop opened on Main Street",
        metadata={"id": 7, "location": "Main Street", "topic": "food"},
    ),
    Document(
        page_content="the book club meets at the library",
        metadata={"id": 8, "location": "library", "topic": "reading"},
    ),
    Document(
        page_content="the library hosts a weekly story time for kids",
        metadata={"id": 9, "location": "library", "topic": "reading"},
    ),
    Document(
        page_content="a cooking class for beginners is offered at the community center",
        metadata={"id": 10, "location": "community center", "topic": "classes"},
    ),
]

vector_store.add_documents(docs, ids=[doc.metadata["id"] for doc in docs])
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

从向量存储中删除项目

vector_store.delete(ids=["3"])

查询向量存储

一旦您的向量存储被创建并添加了相关文档,您很可能希望在链或代理运行期间查询它。

过滤支持

向量存储支持一组过滤器,可应用于文档的元数据字段。
运算符含义/类别
$eq相等 (==)
$ne不相等 (!=)
$lt小于 (<)
$lte小于或等于 (<=)
$gt大于 (>)
$gte大于或等于 (>=)
$in特殊情况 (in)
$nin特殊情况 (not in)
$between特殊情况 (between)
$like文本 (like)
$ilike文本 (不区分大小写 like)
$and逻辑 (and)
$or逻辑 (or)

直接查询

执行简单的相似性搜索可以按如下方式完成
results = vector_store.similarity_search(
    "kitty", k=10, filter={"id": {"$in": [1, 5, 2, 9]}}
)
for doc in results:
    print(f"* {doc.page_content} [{doc.metadata}]")
* there are cats in the pond [{'id': 1, 'topic': 'animals', 'location': 'pond'}]
* the library hosts a weekly story time for kids [{'id': 9, 'topic': 'reading', 'location': 'library'}]
* ducks are also found in the pond [{'id': 2, 'topic': 'animals', 'location': 'pond'}]
* the new art exhibit is fascinating [{'id': 5, 'topic': 'art', 'location': 'museum'}]
如果您提供一个包含多个字段但没有运算符的字典,则顶层将被解释为逻辑 AND 过滤器。
vector_store.similarity_search(
    "ducks",
    k=10,
    filter={"id": {"$in": [1, 5, 2, 9]}, "location": {"$in": ["pond", "market"]}},
)
[Document(metadata={'id': 1, 'topic': 'animals', 'location': 'pond'}, page_content='there are cats in the pond'),
 Document(metadata={'id': 2, 'topic': 'animals', 'location': 'pond'}, page_content='ducks are also found in the pond')]
vector_store.similarity_search(
    "ducks",
    k=10,
    filter={
        "$and": [
            {"id": {"$in": [1, 5, 2, 9]}},
            {"location": {"$in": ["pond", "market"]}},
        ]
    },
)
[Document(metadata={'id': 1, 'topic': 'animals', 'location': 'pond'}, page_content='there are cats in the pond'),
 Document(metadata={'id': 2, 'topic': 'animals', 'location': 'pond'}, page_content='ducks are also found in the pond')]
如果您想执行相似性搜索并接收相应的分数,可以运行
results = vector_store.similarity_search_with_score(query="cats", k=1)
for doc, score in results:
    print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]")
* [SIM=0.763449] there are cats in the pond [{'id': 1, 'topic': 'animals', 'location': 'pond'}]
有关您可以在 PGVector 向量存储上执行的不同搜索的完整列表,请参阅 API 参考

通过转换为检索器进行查询

您还可以将向量存储转换为检索器,以便在您的链中更轻松地使用。
retriever = vector_store.as_retriever(search_type="mmr", search_kwargs={"k": 1})
retriever.invoke("kitty")
[Document(metadata={'id': 1, 'topic': 'animals', 'location': 'pond'}, page_content='there are cats in the pond')]

用于检索增强生成的使用

有关如何将此向量存储用于检索增强生成 (RAG) 的指南,请参阅以下部分

API 参考

有关所有 __ModuleName__VectorStore 功能和配置的详细文档,请参阅 API 参考:python.langchain.com/api_reference/postgres/vectorstores/langchain_postgres.vectorstores.PGVector.html
以编程方式连接这些文档到 Claude、VSCode 等,通过 MCP 获取实时答案。
© . This site is unofficial and not affiliated with LangChain, Inc.