应用程序必须使用配置文件进行配置,才能部署到 LangSmith(或进行自托管)。本操作指南讨论了设置 JavaScript 应用程序以使用package.json指定项目依赖项进行部署的基本步骤。 本演练基于此存储库,您可以试用它来了解有关如何设置应用程序以进行部署的更多信息。 最终的存储库结构将如下所示:my-app/
├── src # all project code lies within here
│ ├── utils # optional utilities for your graph
│ │ ├── tools.ts # tools for your graph
│ │ ├── nodes.ts # node functions for your graph
│ │ └── state.ts # state definition of your graph
│ └── agent.ts # code for constructing your graph
├── package.json # package dependencies
├── .env # environment variables
└── langgraph.json # configuration file for LangGraph
LangSmith 部署支持部署 LangGraph 图。但是,图的节点的实现可以包含任意 Python 代码。这意味着任何框架都可以在节点内实现并部署在 LangSmith 部署上。这使您可以将核心应用程序逻辑保留在 LangGraph 之外,同时仍然使用 LangSmith 进行部署、扩展和可观测性。
每一步之后,都会提供一个示例文件目录,以演示代码如何组织。
指定依赖项
依赖项可以在package.json中指定。如果没有创建这些文件,那么稍后可以在配置文件中指定依赖项。 示例package.json文件:{
"name": "langgraphjs-studio-starter",
"packageManager": "yarn@1.22.22",
"dependencies": {
"@langchain/community": "^0.2.31",
"@langchain/core": "^0.2.31",
"@langchain/langgraph": "^0.2.0",
"@langchain/openai": "^0.2.8"
}
}
部署应用程序时,将使用您选择的包管理器安装依赖项,前提是它们符合下面列出的兼容版本范围
"@langchain/core": "^0.3.42",
"@langchain/langgraph": "^0.2.57",
"@langchain/langgraph-checkpoint": "~0.0.16",
示例文件目录
my-app/
└── package.json # package dependencies
指定环境变量
环境变量可以选择在文件中指定(例如.env)。请参阅环境变量参考以配置部署的其他变量。 示例.env文件:MY_ENV_VAR_1=foo
MY_ENV_VAR_2=bar
OPENAI_API_KEY=key
TAVILY_API_KEY=key_2
示例文件目录
my-app/
├── package.json
└── .env # environment variables
定义图
实现您的图。图可以在单个文件或多个文件中定义。记下要包含在应用程序中的每个编译图的变量名。变量名稍后将在创建配置文件时使用。 这是一个示例agent.ts:import type { AIMessage } from "@langchain/core/messages";
import { TavilySearchResults } from "@langchain/community/tools/tavily_search";
import { ChatOpenAI } from "@langchain/openai";
import { MessagesAnnotation, StateGraph } from "@langchain/langgraph";
import { ToolNode } from "@langchain/langgraph/prebuilt";
const tools = [new TavilySearchResults({ maxResults: 3 })];
// Define the function that calls the model
async function callModel(state: typeof MessagesAnnotation.State) {
/**
* Call the LLM powering our agent.
* Feel free to customize the prompt, model, and other logic!
*/
const model = new ChatOpenAI({
model: "gpt-4o",
}).bindTools(tools);
const response = await model.invoke([
{
role: "system",
content: `You are a helpful assistant. The current date is ${new Date().getTime()}.`,
},
...state.messages,
]);
// MessagesAnnotation supports returning a single message or array of messages
return { messages: response };
}
// Define the function that determines whether to continue or not
function routeModelOutput(state: typeof MessagesAnnotation.State) {
const messages = state.messages;
const lastMessage: AIMessage = messages[messages.length - 1];
// If the LLM is invoking tools, route there.
if ((lastMessage?.tool_calls?.length ?? 0) > 0) {
return "tools";
}
// Otherwise end the graph.
return "__end__";
}
// Define a new graph.
// See https://github.langchain.ac.cn/langgraphjs/how-tos/define-state/#getting-started for
// more on defining custom graph states.
const workflow = new StateGraph(MessagesAnnotation)
// Define the two nodes we will cycle between
.addNode("callModel", callModel)
.addNode("tools", new ToolNode(tools))
// Set the entrypoint as `callModel`
// This means that this node is the first one called
.addEdge("__start__", "callModel")
.addConditionalEdges(
// First, we define the edges' source node. We use `callModel`.
// This means these are the edges taken after the `callModel` node is called.
"callModel",
// Next, we pass in the function that will determine the sink node(s), which
// will be called after the source node is called.
routeModelOutput,
// List of the possible destinations the conditional edge can route to.
// Required for conditional edges to properly render the graph in Studio
["tools", "__end__"]
)
// This means that after `tools` is called, `callModel` node is called next.
.addEdge("tools", "callModel");
// Finally, we compile it!
// This compiles it into a graph you can invoke and deploy.
export const graph = workflow.compile();
示例文件目录
my-app/
├── src # all project code lies within here
│ ├── utils # optional utilities for your graph
│ │ ├── tools.ts # tools for your graph
│ │ ├── nodes.ts # node functions for your graph
│ │ └── state.ts # state definition of your graph
│ └── agent.ts # code for constructing your graph
├── package.json # package dependencies
├── .env # environment variables
└── langgraph.json # configuration file for LangGraph
创建 API 配置
创建一个名为langgraph.json的配置文件。有关配置文件 JSON 对象中每个键的详细说明,请参阅配置文件参考。 示例langgraph.json文件:{
"node_version": "20",
"dockerfile_lines": [],
"dependencies": ["."],
"graphs": {
"agent": "./src/agent.ts:graph"
},
"env": ".env"
}
请注意,CompiledGraph的变量名出现在顶级graphs键中每个子键的值的末尾(即:<variable_name>)。
配置位置 配置文件必须放置在与包含编译图和相关依赖项的 TypeScript 文件处于相同或更高层次的目录中。
下一步
设置好项目并将其放入 GitHub 存储库后,就可以部署您的应用程序了。