概览
在本教程中,您将学习如何使用 LangChain 代理构建一个能够回答有关 SQL 数据库问题的代理。 在较高层面,该代理将:1
从数据库中获取可用表和模式
2
决定哪些表与问题相关
3
获取相关表的模式
4
根据问题和模式信息生成查询
5
使用 LLM 仔细检查查询是否有常见错误
6
执行查询并返回结果
7
纠正数据库引擎发现的错误,直到查询成功
8
根据结果 формулировать(拟定)响应
构建 SQL 数据库的问答系统需要执行模型生成的 SQL 查询。这样做存在固有的风险。请确保您的数据库连接权限始终尽可能地窄,以满足代理的需求。这将减轻(但不能消除)构建模型驱动系统的风险。
概念
我们将涵盖以下概念设置
安装
复制
向 AI 提问
pip install langchain langgraph langchain-community
LangSmith
设置 LangSmith 来检查您的链或代理内部发生了什么。然后设置以下环境变量:复制
向 AI 提问
export LANGSMITH_TRACING="true"
export LANGSMITH_API_KEY="..."
1. 选择一个大型语言模型 (LLM)
选择一个支持工具调用的模型- OpenAI
- Anthropic
- Azure
- Google Gemini
- AWS Bedrock
👉 阅读 OpenAI 聊天模型集成文档
复制
向 AI 提问
pip install -U "langchain[openai]"
复制
向 AI 提问
import os
from langchain.chat_models import init_chat_model
os.environ["OPENAI_API_KEY"] = "sk-..."
model = init_chat_model("gpt-4.1")
2. 配置数据库
您将为本教程创建一个 SQLite 数据库。SQLite 是一个轻量级数据库,易于设置和使用。我们将加载chinook 数据库,它是一个代表数字媒体商店的示例数据库。 为方便起见,我们已将数据库 (Chinook.db) 托管在公共 GCS 存储桶中。复制
向 AI 提问
import requests, pathlib
url = "https://storage.googleapis.com/benchmarks-artifacts/chinook/Chinook.db"
local_path = pathlib.Path("Chinook.db")
if local_path.exists():
print(f"{local_path} already exists, skipping download.")
else:
response = requests.get(url)
if response.status_code == 200:
local_path.write_bytes(response.content)
print(f"File downloaded and saved as {local_path}")
else:
print(f"Failed to download the file. Status code: {response.status_code}")
langchain_community 包中提供的便捷 SQL 数据库封装器来与数据库交互。该封装器提供了一个简单的接口来执行 SQL 查询并获取结果。
复制
向 AI 提问
from langchain_community.utilities import SQLDatabase
db = SQLDatabase.from_uri("sqlite:///Chinook.db")
print(f"Dialect: {db.dialect}")
print(f"Available tables: {db.get_usable_table_names()}")
print(f'Sample output: {db.run("SELECT * FROM Artist LIMIT 5;")}')
复制
向 AI 提问
Dialect: sqlite
Available tables: ['Album', 'Artist', 'Customer', 'Employee', 'Genre', 'Invoice', 'InvoiceLine', 'MediaType', 'Playlist', 'PlaylistTrack', 'Track']
Sample output: [(1, 'AC/DC'), (2, 'Accept'), (3, 'Aerosmith'), (4, 'Alanis Morissette'), (5, 'Alice In Chains')]
3. 添加用于数据库交互的工具
使用langchain_community 包中提供的 SQLDatabase 封装器与数据库交互。该封装器提供了一个简单的接口来执行 SQL 查询并获取结果。
复制
向 AI 提问
from langchain_community.agent_toolkits import SQLDatabaseToolkit
toolkit = SQLDatabaseToolkit(db=db, llm=model)
tools = toolkit.get_tools()
for tool in tools:
print(f"{tool.name}: {tool.description}\n")
复制
向 AI 提问
sql_db_query: Input to this tool is a detailed and correct SQL query, output is a result from the database. If the query is not correct, an error message will be returned. If an error is returned, rewrite the query, check the query, and try again. If you encounter an issue with Unknown column 'xxxx' in 'field list', use sql_db_schema to query the correct table fields.
sql_db_schema: Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables. Be sure that the tables actually exist by calling sql_db_list_tables first! Example Input: table1, table2, table3
sql_db_list_tables: Input is an empty string, output is a comma-separated list of tables in the database.
sql_db_query_checker: Use this tool to double check if your query is correct before executing it. Always use this tool before executing a query with sql_db_query!
5. 使用 create_agent
使用 create_agent 以最少的代码构建一个 ReAct 代理。该代理将解释请求并生成 SQL 命令,工具将执行这些命令。如果命令有错误,错误消息将返回给模型。然后模型可以检查原始请求和新的错误消息,并生成新命令。这可以持续进行,直到 LLM 成功生成命令或达到结束计数。这种向模型提供反馈(在本例中是错误消息)的模式非常强大。 使用描述性的系统提示来初始化代理以自定义其行为:复制
向 AI 提问
system_prompt = """
You are an agent designed to interact with a SQL database.
Given an input question, create a syntactically correct {dialect} query to run,
then look at the results of the query and return the answer. Unless the user
specifies a specific number of examples they wish to obtain, always limit your
query to at most {top_k} results.
You can order the results by a relevant column to return the most interesting
examples in the database. Never query for all the columns from a specific table,
only ask for the relevant columns given the question.
You MUST double check your query before executing it. If you get an error while
executing a query, rewrite the query and try again.
DO NOT make any DML statements (INSERT, UPDATE, DELETE, DROP etc.) to the
database.
To start you should ALWAYS look at the tables in the database to see what you
can query. Do NOT skip this step.
Then you should query the schema of the most relevant tables.
""".format(
dialect=db.dialect,
top_k=5,
)
复制
向 AI 提问
from langchain.agents import create_agent
agent = create_agent(
model,
tools,
system_prompt=system_prompt,
)
6. 运行代理
对示例查询运行代理并观察其行为复制
向 AI 提问
question = "Which genre on average has the longest tracks?"
for step in agent.stream(
{"messages": [{"role": "user", "content": question}]},
stream_mode="values",
):
step["messages"][-1].pretty_print()
复制
向 AI 提问
================================ Human Message =================================
Which genre on average has the longest tracks?
================================== Ai Message ==================================
Tool Calls:
sql_db_list_tables (call_BQsWg8P65apHc8BTJ1NPDvnM)
Call ID: call_BQsWg8P65apHc8BTJ1NPDvnM
Args:
================================= Tool Message =================================
Name: sql_db_list_tables
Album, Artist, Customer, Employee, Genre, Invoice, InvoiceLine, MediaType, Playlist, PlaylistTrack, Track
================================== Ai Message ==================================
Tool Calls:
sql_db_schema (call_i89tjKECFSeERbuACYm4w0cU)
Call ID: call_i89tjKECFSeERbuACYm4w0cU
Args:
table_names: Track, Genre
================================= Tool Message =================================
Name: sql_db_schema
CREATE TABLE "Genre" (
"GenreId" INTEGER NOT NULL,
"Name" NVARCHAR(120),
PRIMARY KEY ("GenreId")
)
/*
3 rows from Genre table:
GenreId Name
1 Rock
2 Jazz
3 Metal
*/
CREATE TABLE "Track" (
"TrackId" INTEGER NOT NULL,
"Name" NVARCHAR(200) NOT NULL,
"AlbumId" INTEGER,
"MediaTypeId" INTEGER NOT NULL,
"GenreId" INTEGER,
"Composer" NVARCHAR(220),
"Milliseconds" INTEGER NOT NULL,
"Bytes" INTEGER,
"UnitPrice" NUMERIC(10, 2) NOT NULL,
PRIMARY KEY ("TrackId"),
FOREIGN KEY("MediaTypeId") REFERENCES "MediaType" ("MediaTypeId"),
FOREIGN KEY("GenreId") REFERENCES "Genre" ("GenreId"),
FOREIGN KEY("AlbumId") REFERENCES "Album" ("AlbumId")
)
/*
3 rows from Track table:
TrackId Name AlbumId MediaTypeId GenreId Composer Milliseconds Bytes UnitPrice
1 For Those About To Rock (We Salute You) 1 1 1 Angus Young, Malcolm Young, Brian Johnson 343719 11170334 0.99
2 Balls to the Wall 2 2 1 U. Dirkschneider, W. Hoffmann, H. Frank, P. Baltes, S. Kaufmann, G. Hoffmann 342562 5510424 0.99
3 Fast As a Shark 3 2 1 F. Baltes, S. Kaufman, U. Dirkscneider & W. Hoffman 230619 3990994 0.99
*/
================================== Ai Message ==================================
Tool Calls:
sql_db_query_checker (call_G64yYm6R6UauiVPCXJZMA49b)
Call ID: call_G64yYm6R6UauiVPCXJZMA49b
Args:
query: SELECT Genre.Name, AVG(Track.Milliseconds) AS AverageLength FROM Track INNER JOIN Genre ON Track.GenreId = Genre.GenreId GROUP BY Genre.Name ORDER BY AverageLength DESC LIMIT 5;
================================= Tool Message =================================
Name: sql_db_query_checker
SELECT Genre.Name, AVG(Track.Milliseconds) AS AverageLength FROM Track INNER JOIN Genre ON Track.GenreId = Genre.GenreId GROUP BY Genre.Name ORDER BY AverageLength DESC LIMIT 5;
================================== Ai Message ==================================
Tool Calls:
sql_db_query (call_AnO3SrhD0ODJBxh6dHMwvHwZ)
Call ID: call_AnO3SrhD0ODJBxh6dHMwvHwZ
Args:
query: SELECT Genre.Name, AVG(Track.Milliseconds) AS AverageLength FROM Track INNER JOIN Genre ON Track.GenreId = Genre.GenreId GROUP BY Genre.Name ORDER BY AverageLength DESC LIMIT 5;
================================= Tool Message =================================
Name: sql_db_query
[('Sci Fi & Fantasy', 2911783.0384615385), ('Science Fiction', 2625549.076923077), ('Drama', 2575283.78125), ('TV Shows', 2145041.0215053763), ('Comedy', 1585263.705882353)]
================================== Ai Message ==================================
On average, the genre with the longest tracks is "Sci Fi & Fantasy" with an average track length of approximately 2,911,783 milliseconds. This is followed by "Science Fiction," "Drama," "TV Shows," and "Comedy."
您可以在 LangSmith 跟踪中检查上述运行的所有方面,包括所采取的步骤、调用的工具、LLM 看到的提示等等。
(可选)使用 Studio
Studio 提供了一个“客户端”循环和内存,因此您可以将其作为聊天界面运行并查询数据库。您可以提出诸如“告诉我数据库的模式”或“显示前 5 位客户的账单”之类的问题。您将看到生成的 SQL 命令和结果输出。有关如何开始的详细信息如下。在 Studio 中运行您的代理
在 Studio 中运行您的代理
除了前面提到的包之外,您还需要在您将运行的目录中,您需要一个包含以下内容的 创建文件
复制
向 AI 提问
pip install -U langgraph-cli[inmem]>=0.4.0
langgraph.json 文件复制
向 AI 提问
{
"dependencies": ["."],
"graphs": {
"agent": "./sql_agent.py:agent",
"graph": "./sql_agent_langgraph.py:graph"
},
"env": ".env"
}
sql_agent.py 并插入此内容复制
向 AI 提问
#sql_agent.py for studio
import pathlib
from langchain.agents import create_agent
from langchain.chat_models import init_chat_model
from langchain_community.agent_toolkits import SQLDatabaseToolkit
from langchain_community.utilities import SQLDatabase
import requests
# Initialize an LLM
model = init_chat_model("gpt-4.1")
# Get the database, store it locally
url = "https://storage.googleapis.com/benchmarks-artifacts/chinook/Chinook.db"
local_path = pathlib.Path("Chinook.db")
if local_path.exists():
print(f"{local_path} already exists, skipping download.")
else:
response = requests.get(url)
if response.status_code == 200:
local_path.write_bytes(response.content)
print(f"File downloaded and saved as {local_path}")
else:
print(f"Failed to download the file. Status code: {response.status_code}")
db = SQLDatabase.from_uri("sqlite:///Chinook.db")
# Create the tools
toolkit = SQLDatabaseToolkit(db=db, llm=model)
tools = toolkit.get_tools()
for tool in tools:
print(f"{tool.name}: {tool.description}\n")
# Use create_agent
system_prompt = """
You are an agent designed to interact with a SQL database.
Given an input question, create a syntactically correct {dialect} query to run,
then look at the results of the query and return the answer. Unless the user
specifies a specific number of examples they wish to obtain, always limit your
query to at most {top_k} results.
You can order the results by a relevant column to return the most interesting
examples in the database. Never query for all the columns from a specific table,
only ask for the relevant columns given the question.
You MUST double check your query before executing it. If you get an error while
executing a query, rewrite the query and try again.
DO NOT make any DML statements (INSERT, UPDATE, DELETE, DROP etc.) to the
database.
To start you should ALWAYS look at the tables in the database to see what you
can query. Do NOT skip this step.
Then you should query the schema of the most relevant tables.
""".format(
dialect=db.dialect,
top_k=5,
)
agent = create_agent(
model,
tools,
system_prompt=system_prompt,
)
6. 实现人工审核(human-in-the-loop review)
在执行代理的 SQL 查询之前,仔细检查它们是否存在任何意外操作或低效率是明智之举。 LangChain 代理支持内置的人工审核中间件,以增加对代理工具调用的监督。让我们配置代理,以便在调用sql_db_query 工具时暂停以供人工审核:复制
向 AI 提问
from langchain.agents import create_agent
from langchain.agents.middleware import HumanInTheLoopMiddleware
from langgraph.checkpoint.memory import InMemorySaver
agent = create_agent(
model,
tools,
system_prompt=system_prompt,
middleware=[
HumanInTheLoopMiddleware(
interrupt_on={"sql_db_query": True},
description_prefix="Tool execution pending approval",
),
],
checkpointer=InMemorySaver(),
)
sql_db_query 工具之前暂停以供审核
复制
向 AI 提问
question = "Which genre on average has the longest tracks?"
config = {"configurable": {"thread_id": "1"}}
for step in agent.stream(
{"messages": [{"role": "user", "content": question}]},
config,
stream_mode="values",
):
if "messages" in step:
step["messages"][-1].pretty_print()
elif "__interrupt__" in step:
print("INTERRUPTED:")
interrupt = step["__interrupt__"][0]
for request in interrupt.value["action_requests"]:
print(request["description"])
else:
pass
复制
向 AI 提问
...
INTERRUPTED:
Tool execution pending approval
Tool: sql_db_query
Args: {'query': 'SELECT g.Name AS Genre, AVG(t.Milliseconds) AS AvgTrackLength FROM Track t JOIN Genre g ON t.GenreId = g.GenreId GROUP BY g.Name ORDER BY AvgTrackLength DESC LIMIT 1;'}
复制
向 AI 提问
from langgraph.types import Command
for step in agent.stream(
Command(resume={"decisions": [{"type": "approve"}]}),
config,
stream_mode="values",
):
if "messages" in step:
step["messages"][-1].pretty_print()
elif "__interrupt__" in step:
print("INTERRUPTED:")
interrupt = step["__interrupt__"][0]
for request in interrupt.value["action_requests"]:
print(request["description"])
else:
pass
复制
向 AI 提问
================================== Ai Message ==================================
Tool Calls:
sql_db_query (call_7oz86Epg7lYRqi9rQHbZPS1U)
Call ID: call_7oz86Epg7lYRqi9rQHbZPS1U
Args:
query: SELECT Genre.Name, AVG(Track.Milliseconds) AS AvgDuration FROM Track JOIN Genre ON Track.GenreId = Genre.GenreId GROUP BY Genre.Name ORDER BY AvgDuration DESC LIMIT 5;
================================= Tool Message =================================
Name: sql_db_query
[('Sci Fi & Fantasy', 2911783.0384615385), ('Science Fiction', 2625549.076923077), ('Drama', 2575283.78125), ('TV Shows', 2145041.0215053763), ('Comedy', 1585263.705882353)]
================================== Ai Message ==================================
The genre with the longest average track length is "Sci Fi & Fantasy" with an average duration of about 2,911,783 milliseconds, followed by "Science Fiction" and "Drama."
后续步骤
如需更深入的自定义,请查看本教程,了解如何直接使用 LangGraph 原语实现 SQL 代理。以编程方式连接这些文档到 Claude、VSCode 等,通过 MCP 获取实时答案。