跳到主要内容
在本教程中,我们将使用 LangGraph 构建一个自定义代理,该代理可以回答有关 SQL 数据库的问题。 LangChain 提供了使用 LangGraph 原语实现的内置 代理 实现。如果需要更深层次的定制,代理可以直接在 LangGraph 中实现。本指南演示了 SQL 代理的示例实现。您可以在此处找到使用高级 LangChain 抽象构建 SQL 代理的教程。
构建 SQL 数据库的问答系统需要执行模型生成的 SQL 查询。这样做存在固有的风险。请确保您的数据库连接权限始终尽可能地窄,以满足代理的需求。这将减轻(但不能消除)构建模型驱动系统的风险。
预构建代理使我们能够快速入门,但我们依赖于系统提示来约束其行为——例如,我们指示代理始终以“列出表”工具开始,并始终在执行查询之前运行查询检查工具。 通过自定义代理,我们可以在 LangGraph 中实现更高程度的控制。在这里,我们实现了一个简单的 ReAct 代理设置,其中包含用于特定工具调用的专用节点。我们将使用与预构建代理相同的 [状态]。

概念

我们将涵盖以下概念

设置

安装

pip install langchain  langgraph  langchain-community

LangSmith

设置 LangSmith 来检查您的链或代理内部发生了什么。然后设置以下环境变量:
export LANGSMITH_TRACING="true"
export LANGSMITH_API_KEY="..."

1. 选择一个大型语言模型 (LLM)

选择支持工具调用的模型
  • OpenAI
  • Anthropic
  • Azure
  • Google Gemini
  • AWS Bedrock
👉 阅读 OpenAI 聊天模型集成文档
pip install -U "langchain[openai]"
import os
from langchain.chat_models import init_chat_model

os.environ["OPENAI_API_KEY"] = "sk-..."

model = init_chat_model("gpt-4.1")
下面示例中显示的输出使用了 OpenAI。

2. 配置数据库

您将为本教程创建一个 SQLite 数据库。SQLite 是一个轻量级数据库,易于设置和使用。我们将加载 chinook 数据库,它是一个代表数字媒体商店的示例数据库。 为方便起见,我们已将数据库 (Chinook.db) 托管在公共 GCS 存储桶中。
import requests, pathlib

url = "https://storage.googleapis.com/benchmarks-artifacts/chinook/Chinook.db"
local_path = pathlib.Path("Chinook.db")

if local_path.exists():
    print(f"{local_path} already exists, skipping download.")
else:
    response = requests.get(url)
    if response.status_code == 200:
        local_path.write_bytes(response.content)
        print(f"File downloaded and saved as {local_path}")
    else:
        print(f"Failed to download the file. Status code: {response.status_code}")
我们将使用 `langchain_community` 包中提供的一个便捷的 SQL 数据库包装器与数据库交互。该包装器提供了一个简单的接口来执行 SQL 查询并获取结果。
from langchain_community.utilities import SQLDatabase

db = SQLDatabase.from_uri("sqlite:///Chinook.db")

print(f"Dialect: {db.dialect}")
print(f"Available tables: {db.get_usable_table_names()}")
print(f'Sample output: {db.run("SELECT * FROM Artist LIMIT 5;")}')
Dialect: sqlite
Available tables: ['Album', 'Artist', 'Customer', 'Employee', 'Genre', 'Invoice', 'InvoiceLine', 'MediaType', 'Playlist', 'PlaylistTrack', 'Track']
Sample output: [(1, 'AC/DC'), (2, 'Accept'), (3, 'Aerosmith'), (4, 'Alanis Morissette'), (5, 'Alice In Chains')]

3. 添加用于数据库交互的工具

使用 `langchain_community` 包中提供的 `SQLDatabase` 包装器与数据库交互。该包装器提供了一个简单的接口来执行 SQL 查询并获取结果。
from langchain_community.agent_toolkits import SQLDatabaseToolkit

toolkit = SQLDatabaseToolkit(db=db, llm=llm)

tools = toolkit.get_tools()

for tool in tools:
    print(f"{tool.name}: {tool.description}\n")
sql_db_query: Input to this tool is a detailed and correct SQL query, output is a result from the database. If the query is not correct, an error message will be returned. If an error is returned, rewrite the query, check the query, and try again. If you encounter an issue with Unknown column 'xxxx' in 'field list', use sql_db_schema to query the correct table fields.

sql_db_schema: Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables. Be sure that the tables actually exist by calling sql_db_list_tables first! Example Input: table1, table2, table3

sql_db_list_tables: Input is an empty string, output is a comma-separated list of tables in the database.

sql_db_query_checker: Use this tool to double check if your query is correct before executing it. Always use this tool before executing a query with sql_db_query!

4. 定义应用步骤

我们为以下步骤构建了专用节点
  • 列出数据库表
  • 调用“获取模式”工具
  • 生成查询
  • 检查查询
将这些步骤放在专用节点中,我们可以 (1) 在需要时强制工具调用,以及 (2) 自定义与每个步骤相关的提示。
from typing import Literal

from langchain.agents import ToolNode
from langchain.messages import AIMessage
from langchain_core.runnables import RunnableConfig
from langgraph.graph import END, START, MessagesState, StateGraph


get_schema_tool = next(tool for tool in tools if tool.name == "sql_db_schema")
get_schema_node = ToolNode([get_schema_tool], name="get_schema")

run_query_tool = next(tool for tool in tools if tool.name == "sql_db_query")
run_query_node = ToolNode([run_query_tool], name="run_query")


# Example: create a predetermined tool call
def list_tables(state: MessagesState):
    tool_call = {
        "name": "sql_db_list_tables",
        "args": {},
        "id": "abc123",
        "type": "tool_call",
    }
    tool_call_message = AIMessage(content="", tool_calls=[tool_call])

    list_tables_tool = next(tool for tool in tools if tool.name == "sql_db_list_tables")
    tool_message = list_tables_tool.invoke(tool_call)
    response = AIMessage(f"Available tables: {tool_message.content}")

    return {"messages": [tool_call_message, tool_message, response]}


# Example: force a model to create a tool call
def call_get_schema(state: MessagesState):
    # Note that LangChain enforces that all models accept `tool_choice="any"`
    # as well as `tool_choice=<string name of tool>`.
    llm_with_tools = llm.bind_tools([get_schema_tool], tool_choice="any")
    response = llm_with_tools.invoke(state["messages"])

    return {"messages": [response]}


generate_query_system_prompt = """
You are an agent designed to interact with a SQL database.
Given an input question, create a syntactically correct {dialect} query to run,
then look at the results of the query and return the answer. Unless the user
specifies a specific number of examples they wish to obtain, always limit your
query to at most {top_k} results.

You can order the results by a relevant column to return the most interesting
examples in the database. Never query for all the columns from a specific table,
only ask for the relevant columns given the question.

DO NOT make any DML statements (INSERT, UPDATE, DELETE, DROP etc.) to the database.
""".format(
    dialect=db.dialect,
    top_k=5,
)


def generate_query(state: MessagesState):
    system_message = {
        "role": "system",
        "content": generate_query_system_prompt,
    }
    # We do not force a tool call here, to allow the model to
    # respond naturally when it obtains the solution.
    llm_with_tools = llm.bind_tools([run_query_tool])
    response = llm_with_tools.invoke([system_message] + state["messages"])

    return {"messages": [response]}


check_query_system_prompt = """
You are a SQL expert with a strong attention to detail.
Double check the {dialect} query for common mistakes, including:
- Using NOT IN with NULL values
- Using UNION when UNION ALL should have been used
- Using BETWEEN for exclusive ranges
- Data type mismatch in predicates
- Properly quoting identifiers
- Using the correct number of arguments for functions
- Casting to the correct data type
- Using the proper columns for joins

If there are any of the above mistakes, rewrite the query. If there are no mistakes,
just reproduce the original query.

You will call the appropriate tool to execute the query after running this check.
""".format(dialect=db.dialect)


def check_query(state: MessagesState):
    system_message = {
        "role": "system",
        "content": check_query_system_prompt,
    }

    # Generate an artificial user message to check
    tool_call = state["messages"][-1].tool_calls[0]
    user_message = {"role": "user", "content": tool_call["args"]["query"]}
    llm_with_tools = llm.bind_tools([run_query_tool], tool_choice="any")
    response = llm_with_tools.invoke([system_message, user_message])
    response.id = state["messages"][-1].id

    return {"messages": [response]}

5. 实现代理

现在我们可以使用 Graph API 将这些步骤组装成一个工作流。我们在查询生成步骤定义一个条件边,如果生成了查询,则会路由到查询检查器,如果没有工具调用,则结束,以便 LLM 已对查询做出响应。
def should_continue(state: MessagesState) -> Literal[END, "check_query"]:
    messages = state["messages"]
    last_message = messages[-1]
    if not last_message.tool_calls:
        return END
    else:
        return "check_query"


builder = StateGraph(MessagesState)
builder.add_node(list_tables)
builder.add_node(call_get_schema)
builder.add_node(get_schema_node, "get_schema")
builder.add_node(generate_query)
builder.add_node(check_query)
builder.add_node(run_query_node, "run_query")

builder.add_edge(START, "list_tables")
builder.add_edge("list_tables", "call_get_schema")
builder.add_edge("call_get_schema", "get_schema")
builder.add_edge("get_schema", "generate_query")
builder.add_conditional_edges(
    "generate_query",
    should_continue,
)
builder.add_edge("check_query", "run_query")
builder.add_edge("run_query", "generate_query")

agent = builder.compile()
我们在下面可视化该应用程序
from IPython.display import Image, display
from langchain_core.runnables.graph import CurveStyle, MermaidDrawMethod, NodeStyles

display(Image(agent.get_graph().draw_mermaid_png()))
SQL agent graph 现在我们可以调用图:
question = "Which genre on average has the longest tracks?"

for step in agent.stream(
    {"messages": [{"role": "user", "content": question}]},
    stream_mode="values",
):
    step["messages"][-1].pretty_print()
================================ Human Message =================================

Which genre on average has the longest tracks?
================================== Ai Message ==================================

Available tables: Album, Artist, Customer, Employee, Genre, Invoice, InvoiceLine, MediaType, Playlist, PlaylistTrack, Track
================================== Ai Message ==================================
Tool Calls:
  sql_db_schema (call_yzje0tj7JK3TEzDx4QnRR3lL)
 Call ID: call_yzje0tj7JK3TEzDx4QnRR3lL
  Args:
    table_names: Genre, Track
================================= Tool Message =================================
Name: sql_db_schema


CREATE TABLE "Genre" (
	"GenreId" INTEGER NOT NULL,
	"Name" NVARCHAR(120),
	PRIMARY KEY ("GenreId")
)

/*
3 rows from Genre table:
GenreId	Name
1	Rock
2	Jazz
3	Metal
*/


CREATE TABLE "Track" (
	"TrackId" INTEGER NOT NULL,
	"Name" NVARCHAR(200) NOT NULL,
	"AlbumId" INTEGER,
	"MediaTypeId" INTEGER NOT NULL,
	"GenreId" INTEGER,
	"Composer" NVARCHAR(220),
	"Milliseconds" INTEGER NOT NULL,
	"Bytes" INTEGER,
	"UnitPrice" NUMERIC(10, 2) NOT NULL,
	PRIMARY KEY ("TrackId"),
	FOREIGN KEY("MediaTypeId") REFERENCES "MediaType" ("MediaTypeId"),
	FOREIGN KEY("GenreId") REFERENCES "Genre" ("GenreId"),
	FOREIGN KEY("AlbumId") REFERENCES "Album" ("AlbumId")
)

/*
3 rows from Track table:
TrackId	Name	AlbumId	MediaTypeId	GenreId	Composer	Milliseconds	Bytes	UnitPrice
1	For Those About To Rock (We Salute You)	1	1	1	Angus Young, Malcolm Young, Brian Johnson	343719	11170334	0.99
2	Balls to the Wall	2	2	1	U. Dirkschneider, W. Hoffmann, H. Frank, P. Baltes, S. Kaufmann, G. Hoffmann	342562	5510424	0.99
3	Fast As a Shark	3	2	1	F. Baltes, S. Kaufman, U. Dirkscneider & W. Hoffman	230619	3990994	0.99
*/
================================== Ai Message ==================================
Tool Calls:
  sql_db_query (call_cb9ApLfZLSq7CWg6jd0im90b)
 Call ID: call_cb9ApLfZLSq7CWg6jd0im90b
  Args:
    query: SELECT Genre.Name, AVG(Track.Milliseconds) AS AvgMilliseconds FROM Track JOIN Genre ON Track.GenreId = Genre.GenreId GROUP BY Genre.GenreId ORDER BY AvgMilliseconds DESC LIMIT 5;
================================== Ai Message ==================================
Tool Calls:
  sql_db_query (call_DMVALfnQ4kJsuF3Yl6jxbeAU)
 Call ID: call_DMVALfnQ4kJsuF3Yl6jxbeAU
  Args:
    query: SELECT Genre.Name, AVG(Track.Milliseconds) AS AvgMilliseconds FROM Track JOIN Genre ON Track.GenreId = Genre.GenreId GROUP BY Genre.GenreId ORDER BY AvgMilliseconds DESC LIMIT 5;
================================= Tool Message =================================
Name: sql_db_query

[('Sci Fi & Fantasy', 2911783.0384615385), ('Science Fiction', 2625549.076923077), ('Drama', 2575283.78125), ('TV Shows', 2145041.0215053763), ('Comedy', 1585263.705882353)]
================================== Ai Message ==================================

The genre with the longest tracks on average is "Sci Fi & Fantasy," with an average track length of approximately 2,911,783 milliseconds. Other genres with relatively long tracks include "Science Fiction," "Drama," "TV Shows," and "Comedy."
请查看上述运行的LangSmith 跟踪

6. 实现人工审核(human-in-the-loop review)

在执行代理的 SQL 查询之前,检查其是否存在任何意外操作或效率低下之处是明智之举。 这里我们利用 LangGraph 的人机交互功能,在执行 SQL 查询之前暂停运行并等待人工审查。使用 LangGraph 的持久层,我们可以无限期地暂停运行(或者至少只要持久层存在)。 让我们将 `sql_db_query` 工具封装在一个接收人工输入的节点中。我们可以使用中断功能来实现这一点。下面,我们允许输入以批准工具调用、编辑其参数或提供用户反馈。
from langchain_core.runnables import RunnableConfig
from langchain.tools import tool
from langgraph.types import interrupt

@tool(
    run_query_tool.name,
    description=run_query_tool.description,
    args_schema=run_query_tool.args_schema
)
def run_query_tool_with_interrupt(config: RunnableConfig, **tool_input):
    request = {
        "action": run_query_tool.name,
        "args": tool_input,
        "description": "Please review the tool call"
    }
    response = interrupt([request]) 
    # approve the tool call
    if response["type"] == "accept":
        tool_response = run_query_tool.invoke(tool_input, config)
    # update tool call args
    elif response["type"] == "edit":
        tool_input = response["args"]["args"]
        tool_response = run_query_tool.invoke(tool_input, config)
    # respond to the LLM with user feedback
    elif response["type"] == "response":
        user_feedback = response["args"]
        tool_response = user_feedback
    else:
        raise ValueError(f"Unsupported interrupt response type: {response['type']}")

    return tool_response
上述实现遵循了更广泛的人机交互指南中的工具中断示例。有关详细信息和替代方案,请参阅该指南。
现在我们重新组装图。我们将用人工审查取代程序化检查。请注意,我们现在包含了一个检查点;这是暂停和恢复运行所必需的。
from langgraph.checkpoint.memory import InMemorySaver

def should_continue(state: MessagesState) -> Literal[END, "run_query"]:
    messages = state["messages"]
    last_message = messages[-1]
    if not last_message.tool_calls:
        return END
    else:
        return "run_query"

builder = StateGraph(MessagesState)
builder.add_node(list_tables)
builder.add_node(call_get_schema)
builder.add_node(get_schema_node, "get_schema")
builder.add_node(generate_query)
builder.add_node(run_query_node, "run_query")

builder.add_edge(START, "list_tables")
builder.add_edge("list_tables", "call_get_schema")
builder.add_edge("call_get_schema", "get_schema")
builder.add_edge("get_schema", "generate_query")
builder.add_conditional_edges(
    "generate_query",
    should_continue,
)
builder.add_edge("run_query", "generate_query")

checkpointer = InMemorySaver() 
agent = builder.compile(checkpointer=checkpointer) 
我们可以像以前一样调用图。这次,执行被中断了
import json

config = {"configurable": {"thread_id": "1"}}

question = "Which genre on average has the longest tracks?"

for step in agent.stream(
    {"messages": [{"role": "user", "content": question}]},
    config,
    stream_mode="values",
):
    if "messages" in step:
        step["messages"][-1].pretty_print()
    elif "__interrupt__" in step:
        action = step["__interrupt__"][0]
        print("INTERRUPTED:")
        for request in action.value:
            print(json.dumps(request, indent=2))
    else:
        pass
...

INTERRUPTED:
{
  "action": "sql_db_query",
  "args": {
    "query": "SELECT Genre.Name, AVG(Track.Milliseconds) AS AvgLength FROM Track JOIN Genre ON Track.GenreId = Genre.GenreId GROUP BY Genre.Name ORDER BY AvgLength DESC LIMIT 5;"
  },
  "description": "Please review the tool call"
}
我们可以使用 Command 接受或编辑工具调用
from langgraph.types import Command


for step in agent.stream(
    Command(resume={"type": "accept"}),
    # Command(resume={"type": "edit", "args": {"query": "..."}}),
    config,
    stream_mode="values",
):
    if "messages" in step:
        step["messages"][-1].pretty_print()
    elif "__interrupt__" in step:
        action = step["__interrupt__"][0]
        print("INTERRUPTED:")
        for request in action.value:
            print(json.dumps(request, indent=2))
    else:
        pass
================================== Ai Message ==================================
Tool Calls:
  sql_db_query (call_t4yXkD6shwdTPuelXEmY3sAY)
 Call ID: call_t4yXkD6shwdTPuelXEmY3sAY
  Args:
    query: SELECT Genre.Name, AVG(Track.Milliseconds) AS AvgLength FROM Track JOIN Genre ON Track.GenreId = Genre.GenreId GROUP BY Genre.Name ORDER BY AvgLength DESC LIMIT 5;
================================= Tool Message =================================
Name: sql_db_query

[('Sci Fi & Fantasy', 2911783.0384615385), ('Science Fiction', 2625549.076923077), ('Drama', 2575283.78125), ('TV Shows', 2145041.0215053763), ('Comedy', 1585263.705882353)]
================================== Ai Message ==================================

The genre with the longest average track length is "Sci Fi & Fantasy" with an average length of about 2,911,783 milliseconds. Other genres with long average track lengths include "Science Fiction," "Drama," "TV Shows," and "Comedy."
有关详细信息,请参阅人机交互指南

后续步骤

请参阅评估图指南,了解如何使用 LangSmith 评估 LangGraph 应用程序,包括像这样的 SQL 代理。
以编程方式连接这些文档到 Claude、VSCode 等,通过 MCP 获取实时答案。
© . This site is unofficial and not affiliated with LangChain, Inc.