- 构建多代理系统
- 在多个图中重用一组节点
- 分布式开发:当您希望不同的团队独立处理图的不同部分时,您可以将每个部分定义为子图,并且只要子图接口(输入和输出模式)得到遵守,就可以构建父图而无需了解子图的任何细节
设置
复制
向 AI 提问
pip install -U langgraph
从节点调用图
实现子图的一种简单方法是从另一个图的节点内部调用图。在这种情况下,子图可以与父图具有完全不同的模式(没有共享键)。例如,您可能希望为多代理系统中的每个代理保留私有消息历史记录。 如果您的应用程序是这种情况,您需要定义一个调用子图的节点函数。此函数需要在调用子图之前将输入(父)状态转换为子图状态,并在从节点返回状态更新之前将结果转换回父状态。复制
向 AI 提问
from typing_extensions import TypedDict
from langgraph.graph.state import StateGraph, START
class SubgraphState(TypedDict):
bar: str
# Subgraph
def subgraph_node_1(state: SubgraphState):
return {"bar": "hi! " + state["bar"]}
subgraph_builder = StateGraph(SubgraphState)
subgraph_builder.add_node(subgraph_node_1)
subgraph_builder.add_edge(START, "subgraph_node_1")
subgraph = subgraph_builder.compile()
# Parent graph
class State(TypedDict):
foo: str
def call_subgraph(state: State):
# Transform the state to the subgraph state
subgraph_output = subgraph.invoke({"bar": state["foo"]})
# Transform response back to the parent state
return {"foo": subgraph_output["bar"]}
builder = StateGraph(State)
builder.add_node("node_1", call_subgraph)
builder.add_edge(START, "node_1")
graph = builder.compile()
完整示例:不同的状态模式
完整示例:不同的状态模式
复制
向 AI 提问
from typing_extensions import TypedDict
from langgraph.graph.state import StateGraph, START
# Define subgraph
class SubgraphState(TypedDict):
# note that none of these keys are shared with the parent graph state
bar: str
baz: str
def subgraph_node_1(state: SubgraphState):
return {"baz": "baz"}
def subgraph_node_2(state: SubgraphState):
return {"bar": state["bar"] + state["baz"]}
subgraph_builder = StateGraph(SubgraphState)
subgraph_builder.add_node(subgraph_node_1)
subgraph_builder.add_node(subgraph_node_2)
subgraph_builder.add_edge(START, "subgraph_node_1")
subgraph_builder.add_edge("subgraph_node_1", "subgraph_node_2")
subgraph = subgraph_builder.compile()
# Define parent graph
class ParentState(TypedDict):
foo: str
def node_1(state: ParentState):
return {"foo": "hi! " + state["foo"]}
def node_2(state: ParentState):
# Transform the state to the subgraph state
response = subgraph.invoke({"bar": state["foo"]})
# Transform response back to the parent state
return {"foo": response["bar"]}
builder = StateGraph(ParentState)
builder.add_node("node_1", node_1)
builder.add_node("node_2", node_2)
builder.add_edge(START, "node_1")
builder.add_edge("node_1", "node_2")
graph = builder.compile()
for chunk in graph.stream({"foo": "foo"}, subgraphs=True):
print(chunk)
复制
向 AI 提问
((), {'node_1': {'foo': 'hi! foo'}})
(('node_2:9c36dd0f-151a-cb42-cbad-fa2f851f9ab7',), {'grandchild_1': {'my_grandchild_key': 'hi Bob, how are you'}})
(('node_2:9c36dd0f-151a-cb42-cbad-fa2f851f9ab7',), {'grandchild_2': {'bar': 'hi! foobaz'}})
((), {'node_2': {'foo': 'hi! foobaz'}})
完整示例:不同的状态模式(两级子图)
完整示例:不同的状态模式(两级子图)
这是一个包含两级子图的示例:父 -> 子 -> 孙。
复制
向 AI 提问
# Grandchild graph
from typing_extensions import TypedDict
from langgraph.graph.state import StateGraph, START, END
class GrandChildState(TypedDict):
my_grandchild_key: str
def grandchild_1(state: GrandChildState) -> GrandChildState:
# NOTE: child or parent keys will not be accessible here
return {"my_grandchild_key": state["my_grandchild_key"] + ", how are you"}
grandchild = StateGraph(GrandChildState)
grandchild.add_node("grandchild_1", grandchild_1)
grandchild.add_edge(START, "grandchild_1")
grandchild.add_edge("grandchild_1", END)
grandchild_graph = grandchild.compile()
# Child graph
class ChildState(TypedDict):
my_child_key: str
def call_grandchild_graph(state: ChildState) -> ChildState:
# NOTE: parent or grandchild keys won't be accessible here
grandchild_graph_input = {"my_grandchild_key": state["my_child_key"]}
grandchild_graph_output = grandchild_graph.invoke(grandchild_graph_input)
return {"my_child_key": grandchild_graph_output["my_grandchild_key"] + " today?"}
child = StateGraph(ChildState)
# We're passing a function here instead of just compiled graph (`grandchild_graph`)
child.add_node("child_1", call_grandchild_graph)
child.add_edge(START, "child_1")
child.add_edge("child_1", END)
child_graph = child.compile()
# Parent graph
class ParentState(TypedDict):
my_key: str
def parent_1(state: ParentState) -> ParentState:
# NOTE: child or grandchild keys won't be accessible here
return {"my_key": "hi " + state["my_key"]}
def parent_2(state: ParentState) -> ParentState:
return {"my_key": state["my_key"] + " bye!"}
def call_child_graph(state: ParentState) -> ParentState:
child_graph_input = {"my_child_key": state["my_key"]}
child_graph_output = child_graph.invoke(child_graph_input)
return {"my_key": child_graph_output["my_child_key"]}
parent = StateGraph(ParentState)
parent.add_node("parent_1", parent_1)
# We're passing a function here instead of just a compiled graph (`child_graph`)
parent.add_node("child", call_child_graph)
parent.add_node("parent_2", parent_2)
parent.add_edge(START, "parent_1")
parent.add_edge("parent_1", "child")
parent.add_edge("child", "parent_2")
parent.add_edge("parent_2", END)
parent_graph = parent.compile()
for chunk in parent_graph.stream({"my_key": "Bob"}, subgraphs=True):
print(chunk)
复制
向 AI 提问
((), {'parent_1': {'my_key': 'hi Bob'}})
(('child:2e26e9ce-602f-862c-aa66-1ea5a4655e3b', 'child_1:781bb3b1-3971-84ce-810b-acf819a03f9c'), {'grandchild_1': {'my_grandchild_key': 'hi Bob, how are you'}})
(('child:2e26e9ce-602f-862c-aa66-1ea5a4655e3b',), {'child_1': {'my_child_key': 'hi Bob, how are you today?'}})
((), {'child': {'my_key': 'hi Bob, how are you today?'}})
((), {'parent_2': {'my_key': 'hi Bob, how are you today? bye!'}})
将图添加为节点
当父图和子图可以通过模式中的共享状态键(通道)进行通信时,您可以将图添加为另一个图中的节点。例如,在多代理系统中,代理通常通过共享的消息键进行通信。
- 定义子图工作流(在下面的示例中为
subgraph_builder)并编译它 - 在定义父图工作流时,将已编译的子图传递给
add_node方法
复制
向 AI 提问
from typing_extensions import TypedDict
from langgraph.graph.state import StateGraph, START
class State(TypedDict):
foo: str
# Subgraph
def subgraph_node_1(state: State):
return {"foo": "hi! " + state["foo"]}
subgraph_builder = StateGraph(State)
subgraph_builder.add_node(subgraph_node_1)
subgraph_builder.add_edge(START, "subgraph_node_1")
subgraph = subgraph_builder.compile()
# Parent graph
builder = StateGraph(State)
builder.add_node("node_1", subgraph)
builder.add_edge(START, "node_1")
graph = builder.compile()
完整示例:共享状态模式
完整示例:共享状态模式
复制
向 AI 提问
from typing_extensions import TypedDict
from langgraph.graph.state import StateGraph, START
# Define subgraph
class SubgraphState(TypedDict):
foo: str # shared with parent graph state
bar: str # private to SubgraphState
def subgraph_node_1(state: SubgraphState):
return {"bar": "bar"}
def subgraph_node_2(state: SubgraphState):
# note that this node is using a state key ('bar') that is only available in the subgraph
# and is sending update on the shared state key ('foo')
return {"foo": state["foo"] + state["bar"]}
subgraph_builder = StateGraph(SubgraphState)
subgraph_builder.add_node(subgraph_node_1)
subgraph_builder.add_node(subgraph_node_2)
subgraph_builder.add_edge(START, "subgraph_node_1")
subgraph_builder.add_edge("subgraph_node_1", "subgraph_node_2")
subgraph = subgraph_builder.compile()
# Define parent graph
class ParentState(TypedDict):
foo: str
def node_1(state: ParentState):
return {"foo": "hi! " + state["foo"]}
builder = StateGraph(ParentState)
builder.add_node("node_1", node_1)
builder.add_node("node_2", subgraph)
builder.add_edge(START, "node_1")
builder.add_edge("node_1", "node_2")
graph = builder.compile()
for chunk in graph.stream({"foo": "foo"}):
print(chunk)
复制
向 AI 提问
{'node_1': {'foo': 'hi! foo'}}
{'node_2': {'foo': 'hi! foobar'}}
添加持久性
您只需要在编译父图时提供检查点器。LangGraph 会自动将检查点器传播到子子图。复制
向 AI 提问
from langgraph.graph import START, StateGraph
from langgraph.checkpoint.memory import MemorySaver
from typing_extensions import TypedDict
class State(TypedDict):
foo: str
# Subgraph
def subgraph_node_1(state: State):
return {"foo": state["foo"] + "bar"}
subgraph_builder = StateGraph(State)
subgraph_builder.add_node(subgraph_node_1)
subgraph_builder.add_edge(START, "subgraph_node_1")
subgraph = subgraph_builder.compile()
# Parent graph
builder = StateGraph(State)
builder.add_node("node_1", subgraph)
builder.add_edge(START, "node_1")
checkpointer = MemorySaver()
graph = builder.compile(checkpointer=checkpointer)
复制
向 AI 提问
subgraph_builder = StateGraph(...)
subgraph = subgraph_builder.compile(checkpointer=True)
查看子图状态
当您启用持久性时,您可以通过适当的方法检查图状态(检查点)。要查看子图状态,您可以使用子图选项。 您可以通过graph.get_state(config)检查图状态。要查看子图状态,您可以使用graph.get_state(config, subgraphs=True)。仅在中断时可用 子图状态仅在子图中断时可见。一旦您恢复图,您将无法访问子图状态。
查看中断的子图状态
查看中断的子图状态
复制
向 AI 提问
from langgraph.graph import START, StateGraph
from langgraph.checkpoint.memory import MemorySaver
from langgraph.types import interrupt, Command
from typing_extensions import TypedDict
class State(TypedDict):
foo: str
# Subgraph
def subgraph_node_1(state: State):
value = interrupt("Provide value:")
return {"foo": state["foo"] + value}
subgraph_builder = StateGraph(State)
subgraph_builder.add_node(subgraph_node_1)
subgraph_builder.add_edge(START, "subgraph_node_1")
subgraph = subgraph_builder.compile()
# Parent graph
builder = StateGraph(State)
builder.add_node("node_1", subgraph)
builder.add_edge(START, "node_1")
checkpointer = MemorySaver()
graph = builder.compile(checkpointer=checkpointer)
config = {"configurable": {"thread_id": "1"}}
graph.invoke({"foo": ""}, config)
parent_state = graph.get_state(config)
# This will be available only when the subgraph is interrupted.
# Once you resume the graph, you won't be able to access the subgraph state.
subgraph_state = graph.get_state(config, subgraphs=True).tasks[0].state
# resume the subgraph
graph.invoke(Command(resume="bar"), config)
- 这仅在子图中断时可用。一旦您恢复图,您将无法访问子图状态。
流式子图输出
要在流式输出中包含子图的输出,您可以在父图的流式方法中设置子图选项。这将同时流式输出父图和任何子图的输出。复制
向 AI 提问
for chunk in graph.stream(
{"foo": "foo"},
subgraphs=True,
stream_mode="updates",
):
print(chunk)
从子图流式传输
从子图流式传输
复制
向 AI 提问
from typing_extensions import TypedDict
from langgraph.graph.state import StateGraph, START
# Define subgraph
class SubgraphState(TypedDict):
foo: str
bar: str
def subgraph_node_1(state: SubgraphState):
return {"bar": "bar"}
def subgraph_node_2(state: SubgraphState):
# note that this node is using a state key ('bar') that is only available in the subgraph
# and is sending update on the shared state key ('foo')
return {"foo": state["foo"] + state["bar"]}
subgraph_builder = StateGraph(SubgraphState)
subgraph_builder.add_node(subgraph_node_1)
subgraph_builder.add_node(subgraph_node_2)
subgraph_builder.add_edge(START, "subgraph_node_1")
subgraph_builder.add_edge("subgraph_node_1", "subgraph_node_2")
subgraph = subgraph_builder.compile()
# Define parent graph
class ParentState(TypedDict):
foo: str
def node_1(state: ParentState):
return {"foo": "hi! " + state["foo"]}
builder = StateGraph(ParentState)
builder.add_node("node_1", node_1)
builder.add_node("node_2", subgraph)
builder.add_edge(START, "node_1")
builder.add_edge("node_1", "node_2")
graph = builder.compile()
for chunk in graph.stream(
{"foo": "foo"},
stream_mode="updates",
subgraphs=True,
):
print(chunk)
复制
向 AI 提问
((), {'node_1': {'foo': 'hi! foo'}})
(('node_2:e58e5673-a661-ebb0-70d4-e298a7fc28b7',), {'subgraph_node_1': {'bar': 'bar'}})
(('node_2:e58e5673-a661-ebb0-70d4-e298a7fc28b7',), {'subgraph_node_2': {'foo': 'hi! foobar'}})
((), {'node_2': {'foo': 'hi! foobar'}})
以编程方式连接这些文档到 Claude、VSCode 等,通过 MCP 获取实时答案。