有关函数式 API 的概念信息,请参阅函数式 API。
创建一个简单的工作流
定义entrypoint 时,输入仅限于函数的第一个参数。要传递多个输入,可以使用字典。
复制
向 AI 提问
const checkpointer = new MemorySaver();
const myWorkflow = entrypoint(
{ checkpointer, name: "myWorkflow" },
async (inputs: { value: number; anotherValue: number }) => {
const value = inputs.value;
const anotherValue = inputs.anotherValue;
// ...
}
);
await myWorkflow.invoke({ value: 1, anotherValue: 2 });
扩展示例:简单工作流
扩展示例:简单工作流
复制
向 AI 提问
import { v4 as uuidv4 } from "uuid";
import { entrypoint, task, MemorySaver } from "@langchain/langgraph";
// Task that checks if a number is even
const isEven = task("isEven", async (number: number) => {
return number % 2 === 0;
});
// Task that formats a message
const formatMessage = task("formatMessage", async (isEven: boolean) => {
return isEven ? "The number is even." : "The number is odd.";
});
// Create a checkpointer for persistence
const checkpointer = new MemorySaver();
const workflow = entrypoint(
{ checkpointer, name: "workflow" },
async (inputs: { number: number }) => {
// Simple workflow to classify a number
const even = await isEven(inputs.number);
return await formatMessage(even);
}
);
// Run the workflow with a unique thread ID
const config = { configurable: { thread_id: uuidv4() } };
const result = await workflow.invoke({ number: 7 }, config);
console.log(result);
扩展示例:用 LLM 撰写文章
扩展示例:用 LLM 撰写文章
此示例演示了如何使用
@task 和 @entrypoint 装饰器。如果提供了检查点器,工作流结果将保留在检查点器中。复制
向 AI 提问
import { v4 as uuidv4 } from "uuid";
import { ChatOpenAI } from "@langchain/openai";
import { entrypoint, task, MemorySaver } from "@langchain/langgraph";
const model = new ChatOpenAI({ model: "gpt-3.5-turbo" });
// Task: generate essay using an LLM
const composeEssay = task("composeEssay", async (topic: string) => {
// Generate an essay about the given topic
const response = await model.invoke([
{ role: "system", content: "You are a helpful assistant that writes essays." },
{ role: "user", content: `Write an essay about ${topic}.` }
]);
return response.content as string;
});
// Create a checkpointer for persistence
const checkpointer = new MemorySaver();
const workflow = entrypoint(
{ checkpointer, name: "workflow" },
async (topic: string) => {
// Simple workflow that generates an essay with an LLM
return await composeEssay(topic);
}
);
// Execute the workflow
const config = { configurable: { thread_id: uuidv4() } };
const result = await workflow.invoke("the history of flight", config);
console.log(result);
并行执行
任务可以通过并发调用并等待结果来并行执行。这对于提高 IO 密集型任务(例如,调用 LLM API)的性能非常有用。复制
向 AI 提问
const addOne = task("addOne", async (number: number) => {
return number + 1;
});
const graph = entrypoint(
{ checkpointer, name: "graph" },
async (numbers: number[]) => {
return await Promise.all(numbers.map(addOne));
}
);
扩展示例:并行 LLM 调用
扩展示例:并行 LLM 调用
此示例演示了如何使用 此示例使用 LangGraph 的并发模型来缩短执行时间,尤其是在任务涉及 I/O(如 LLM 完成)时。
@task 并行运行多个 LLM 调用。每个调用都会生成一个关于不同主题的段落,结果会合并成一个文本输出。复制
向 AI 提问
import { v4 as uuidv4 } from "uuid";
import { ChatOpenAI } from "@langchain/openai";
import { entrypoint, task, MemorySaver } from "@langchain/langgraph";
// Initialize the LLM model
const model = new ChatOpenAI({ model: "gpt-3.5-turbo" });
// Task that generates a paragraph about a given topic
const generateParagraph = task("generateParagraph", async (topic: string) => {
const response = await model.invoke([
{ role: "system", content: "You are a helpful assistant that writes educational paragraphs." },
{ role: "user", content: `Write a paragraph about ${topic}.` }
]);
return response.content as string;
});
// Create a checkpointer for persistence
const checkpointer = new MemorySaver();
const workflow = entrypoint(
{ checkpointer, name: "workflow" },
async (topics: string[]) => {
// Generates multiple paragraphs in parallel and combines them
const paragraphs = await Promise.all(topics.map(generateParagraph));
return paragraphs.join("\n\n");
}
);
// Run the workflow
const config = { configurable: { thread_id: uuidv4() } };
const result = await workflow.invoke(["quantum computing", "climate change", "history of aviation"], config);
console.log(result);
调用图
函数式 API 和图 API 可以在同一个应用程序中一起使用,因为它们共享相同的底层运行时。复制
向 AI 提问
import { entrypoint } from "@langchain/langgraph";
import { StateGraph } from "@langchain/langgraph";
const builder = new StateGraph(/* ... */);
// ...
const someGraph = builder.compile();
const someWorkflow = entrypoint(
{ name: "someWorkflow" },
async (someInput: Record<string, any>) => {
// Call a graph defined using the graph API
const result1 = await someGraph.invoke(/* ... */);
// Call another graph defined using the graph API
const result2 = await anotherGraph.invoke(/* ... */);
return {
result1,
result2,
};
}
);
扩展示例:从函数式 API 调用简单图
扩展示例:从函数式 API 调用简单图
复制
向 AI 提问
import { v4 as uuidv4 } from "uuid";
import { entrypoint, MemorySaver } from "@langchain/langgraph";
import { StateGraph } from "@langchain/langgraph";
import * as z from "zod";
// Define the shared state type
const State = z.object({
foo: z.number(),
});
// Build the graph using the Graph API
const builder = new StateGraph(State)
.addNode("double", (state) => {
return { foo: state.foo * 2 };
})
.addEdge("__start__", "double");
const graph = builder.compile();
// Define the functional API workflow
const checkpointer = new MemorySaver();
const workflow = entrypoint(
{ checkpointer, name: "workflow" },
async (x: number) => {
const result = await graph.invoke({ foo: x });
return { bar: result.foo };
}
);
// Execute the workflow
const config = { configurable: { thread_id: uuidv4() } };
console.log(await workflow.invoke(5, config)); // Output: { bar: 10 }
调用其他入口点
您可以从 entrypoint 或 task 中调用其他 entrypoints。复制
向 AI 提问
// Will automatically use the checkpointer from the parent entrypoint
const someOtherWorkflow = entrypoint(
{ name: "someOtherWorkflow" },
async (inputs: { value: number }) => {
return inputs.value;
}
);
const myWorkflow = entrypoint(
{ checkpointer, name: "myWorkflow" },
async (inputs: { value: number }) => {
const value = await someOtherWorkflow.invoke({ value: 1 });
return value;
}
);
扩展示例:调用另一个入口点
扩展示例:调用另一个入口点
复制
向 AI 提问
import { v4 as uuidv4 } from "uuid";
import { entrypoint, MemorySaver } from "@langchain/langgraph";
// Initialize a checkpointer
const checkpointer = new MemorySaver();
// A reusable sub-workflow that multiplies a number
const multiply = entrypoint(
{ name: "multiply" },
async (inputs: { a: number; b: number }) => {
return inputs.a * inputs.b;
}
);
// Main workflow that invokes the sub-workflow
const main = entrypoint(
{ checkpointer, name: "main" },
async (inputs: { x: number; y: number }) => {
const result = await multiply.invoke({ a: inputs.x, b: inputs.y });
return { product: result };
}
);
// Execute the main workflow
const config = { configurable: { thread_id: uuidv4() } };
console.log(await main.invoke({ x: 6, y: 7 }, config)); // Output: { product: 42 }
流式处理
函数式 API 使用与 图 API 相同的流式传输机制。有关更多详细信息,请阅读流式传输指南部分。 使用流式传输 API 流式传输更新和自定义数据的示例。复制
向 AI 提问
import {
entrypoint,
MemorySaver,
LangGraphRunnableConfig,
} from "@langchain/langgraph";
const checkpointer = new MemorySaver();
const main = entrypoint(
{ checkpointer, name: "main" },
async (
inputs: { x: number },
config: LangGraphRunnableConfig
): Promise<number> => {
config.writer?.("Started processing");
const result = inputs.x * 2;
config.writer?.(`Result is ${result}`);
return result;
}
);
const config = { configurable: { thread_id: "abc" } };
for await (const [mode, chunk] of await main.stream(
{ x: 5 },
{ streamMode: ["custom", "updates"], ...config }
)) {
console.log(`${mode}: ${JSON.stringify(chunk)}`);
}
- 在计算开始之前发出自定义数据。
- 计算结果后发出另一个自定义消息。
- 使用
.stream()处理流式输出。 - 指定要使用的流式传输模式。
复制
向 AI 提问
updates: {"addOne": 2}
updates: {"addTwo": 3}
custom: "hello"
custom: "world"
updates: {"main": 5}
重试策略
复制
向 AI 提问
import {
MemorySaver,
entrypoint,
task,
RetryPolicy,
} from "@langchain/langgraph";
// This variable is just used for demonstration purposes to simulate a network failure.
// It's not something you will have in your actual code.
let attempts = 0;
// Let's configure the RetryPolicy to retry on ValueError.
// The default RetryPolicy is optimized for retrying specific network errors.
const retryPolicy: RetryPolicy = { retryOn: (error) => error instanceof Error };
const getInfo = task(
{
name: "getInfo",
retry: retryPolicy,
},
() => {
attempts += 1;
if (attempts < 2) {
throw new Error("Failure");
}
return "OK";
}
);
const checkpointer = new MemorySaver();
const main = entrypoint(
{ checkpointer, name: "main" },
async (inputs: Record<string, any>) => {
return await getInfo();
}
);
const config = {
configurable: {
thread_id: "1",
},
};
await main.invoke({ any_input: "foobar" }, config);
复制
向 AI 提问
'OK'
缓存任务
复制
向 AI 提问
import {
InMemoryCache,
entrypoint,
task,
CachePolicy,
} from "@langchain/langgraph";
const slowAdd = task(
{
name: "slowAdd",
cache: { ttl: 120 },
},
async (x: number) => {
await new Promise((resolve) => setTimeout(resolve, 1000));
return x * 2;
}
);
const main = entrypoint(
{ cache: new InMemoryCache(), name: "main" },
async (inputs: { x: number }) => {
const result1 = await slowAdd(inputs.x);
const result2 = await slowAdd(inputs.x);
return { result1, result2 };
}
);
for await (const chunk of await main.stream(
{ x: 5 },
{ streamMode: "updates" }
)) {
console.log(chunk);
}
//> { slowAdd: 10 }
//> { slowAdd: 10, '__metadata__': { cached: true } }
//> { main: { result1: 10, result2: 10 } }
ttl以秒为单位指定。在此时间后,缓存将失效。
错误后恢复
复制
向 AI 提问
import { entrypoint, task, MemorySaver } from "@langchain/langgraph";
// This variable is just used for demonstration purposes to simulate a network failure.
// It's not something you will have in your actual code.
let attempts = 0;
const getInfo = task("getInfo", async () => {
/**
* Simulates a task that fails once before succeeding.
* Throws an exception on the first attempt, then returns "OK" on subsequent tries.
*/
attempts += 1;
if (attempts < 2) {
throw new Error("Failure"); // Simulate a failure on the first attempt
}
return "OK";
});
// Initialize an in-memory checkpointer for persistence
const checkpointer = new MemorySaver();
const slowTask = task("slowTask", async () => {
/**
* Simulates a slow-running task by introducing a 1-second delay.
*/
await new Promise((resolve) => setTimeout(resolve, 1000));
return "Ran slow task.";
});
const main = entrypoint(
{ checkpointer, name: "main" },
async (inputs: Record<string, any>) => {
/**
* Main workflow function that runs the slowTask and getInfo tasks sequentially.
*
* Parameters:
* - inputs: Record<string, any> containing workflow input values.
*
* The workflow first executes `slowTask` and then attempts to execute `getInfo`,
* which will fail on the first invocation.
*/
const slowTaskResult = await slowTask(); // Blocking call to slowTask
await getInfo(); // Exception will be raised here on the first attempt
return slowTaskResult;
}
);
// Workflow execution configuration with a unique thread identifier
const config = {
configurable: {
thread_id: "1", // Unique identifier to track workflow execution
},
};
// This invocation will take ~1 second due to the slowTask execution
try {
// First invocation will raise an exception due to the `getInfo` task failing
await main.invoke({ any_input: "foobar" }, config);
} catch (err) {
// Handle the failure gracefully
}
slowTask,因为其结果已保存在检查点中。
复制
向 AI 提问
await main.invoke(null, config);
复制
向 AI 提问
'Ran slow task.'
人工干预
函数式 API 支持使用interrupt 函数和 Command 原语的人工干预工作流。
基本的人工干预工作流
我们将创建三个任务- 追加
"bar"。 - 暂停等待人工输入。恢复时,追加人工输入。
- 追加
"qux"。
复制
向 AI 提问
import { entrypoint, task, interrupt, Command } from "@langchain/langgraph";
const step1 = task("step1", async (inputQuery: string) => {
// Append bar
return `${inputQuery} bar`;
});
const humanFeedback = task("humanFeedback", async (inputQuery: string) => {
// Append user input
const feedback = interrupt(`Please provide feedback: ${inputQuery}`);
return `${inputQuery} ${feedback}`;
});
const step3 = task("step3", async (inputQuery: string) => {
// Append qux
return `${inputQuery} qux`;
});
复制
向 AI 提问
import { MemorySaver } from "@langchain/langgraph";
const checkpointer = new MemorySaver();
const graph = entrypoint(
{ checkpointer, name: "graph" },
async (inputQuery: string) => {
const result1 = await step1(inputQuery);
const result2 = await humanFeedback(result1);
const result3 = await step3(result2);
return result3;
}
);
step_1)的结果被持久化,以便在 interrupt 之后不会再次运行。 让我们发送一个查询字符串:复制
向 AI 提问
const config = { configurable: { thread_id: "1" } };
for await (const event of await graph.stream("foo", config)) {
console.log(event);
console.log("\n");
}
step_1 之后通过 interrupt 暂停。中断提供了恢复运行的指令。要恢复,我们发出一个包含 human_feedback 任务预期数据的Command。
复制
向 AI 提问
// Continue execution
for await (const event of await graph.stream(
new Command({ resume: "baz" }),
config
)) {
console.log(event);
console.log("\n");
}
审查工具调用
为了在执行之前审查工具调用,我们添加了一个调用interrupt 的 review_tool_call 函数。当此函数被调用时,执行将被暂停,直到我们发出命令恢复它。 给定一个工具调用,我们的函数将interrupt以供人工审查。此时我们可以:- 接受工具调用
- 修改工具调用并继续
- 生成自定义工具消息(例如,指示模型重新格式化其工具调用)
复制
向 AI 提问
import { ToolCall } from "@langchain/core/messages/tool";
import { ToolMessage } from "@langchain/core/messages";
function reviewToolCall(toolCall: ToolCall): ToolCall | ToolMessage {
// Review a tool call, returning a validated version
const humanReview = interrupt({
question: "Is this correct?",
tool_call: toolCall,
});
const reviewAction = humanReview.action;
const reviewData = humanReview.data;
if (reviewAction === "continue") {
return toolCall;
} else if (reviewAction === "update") {
const updatedToolCall = { ...toolCall, args: reviewData };
return updatedToolCall;
} else if (reviewAction === "feedback") {
return new ToolMessage({
content: reviewData,
name: toolCall.name,
tool_call_id: toolCall.id,
});
}
throw new Error(`Unknown review action: ${reviewAction}`);
}
ToolMessage]。先前任务(在此示例中为初始模型调用)的结果被持久化,以便在 interrupt 之后不会再次运行。
复制
向 AI 提问
import {
MemorySaver,
entrypoint,
interrupt,
Command,
addMessages,
} from "@langchain/langgraph";
import { ToolMessage, AIMessage, BaseMessage } from "@langchain/core/messages";
const checkpointer = new MemorySaver();
const agent = entrypoint(
{ checkpointer, name: "agent" },
async (
messages: BaseMessage[],
previous?: BaseMessage[]
): Promise<BaseMessage> => {
if (previous !== undefined) {
messages = addMessages(previous, messages);
}
let modelResponse = await callModel(messages);
while (true) {
if (!modelResponse.tool_calls?.length) {
break;
}
// Review tool calls
const toolResults: ToolMessage[] = [];
const toolCalls: ToolCall[] = [];
for (let i = 0; i < modelResponse.tool_calls.length; i++) {
const review = reviewToolCall(modelResponse.tool_calls[i]);
if (review instanceof ToolMessage) {
toolResults.push(review);
} else {
// is a validated tool call
toolCalls.push(review);
if (review !== modelResponse.tool_calls[i]) {
modelResponse.tool_calls[i] = review; // update message
}
}
}
// Execute remaining tool calls
const remainingToolResults = await Promise.all(
toolCalls.map((toolCall) => callTool(toolCall))
);
// Append to message list
messages = addMessages(messages, [
modelResponse,
...toolResults,
...remainingToolResults,
]);
// Call model again
modelResponse = await callModel(messages);
}
// Generate final response
messages = addMessages(messages, modelResponse);
return entrypoint.final({ value: modelResponse, save: messages });
}
);
短期记忆
短期内存允许在同一 线程 ID 的不同 调用 之间存储信息。有关更多详细信息,请参阅短期内存。管理检查点
你可以查看和删除检查点存储的信息。查看线程状态
复制
向 AI 提问
const config = {
configurable: {
thread_id: "1",
// optionally provide an ID for a specific checkpoint,
// otherwise the latest checkpoint is shown
// checkpoint_id: "1f029ca3-1f5b-6704-8004-820c16b69a5a"
},
};
await graph.getState(config);
复制
向 AI 提问
StateSnapshot {
values: {
messages: [
HumanMessage { content: "hi! I'm bob" },
AIMessage { content: "Hi Bob! How are you doing today?" },
HumanMessage { content: "what's my name?" },
AIMessage { content: "Your name is Bob." }
]
},
next: [],
config: { configurable: { thread_id: '1', checkpoint_ns: '', checkpoint_id: '1f029ca3-1f5b-6704-8004-820c16b69a5a' } },
metadata: {
source: 'loop',
writes: { call_model: { messages: AIMessage { content: "Your name is Bob." } } },
step: 4,
parents: {},
thread_id: '1'
},
createdAt: '2025-05-05T16:01:24.680462+00:00',
parentConfig: { configurable: { thread_id: '1', checkpoint_ns: '', checkpoint_id: '1f029ca3-1790-6b0a-8003-baf965b6a38f' } },
tasks: [],
interrupts: []
}
查看线程历史
复制
向 AI 提问
const config = {
configurable: {
thread_id: "1",
},
};
const history = [];
for await (const state of graph.getStateHistory(config)) {
history.push(state);
}
复制
向 AI 提问
[
StateSnapshot {
values: {
messages: [
HumanMessage { content: "hi! I'm bob" },
AIMessage { content: "Hi Bob! How are you doing today? Is there anything I can help you with?" },
HumanMessage { content: "what's my name?" },
AIMessage { content: "Your name is Bob." }
]
},
next: [],
config: { configurable: { thread_id: '1', checkpoint_ns: '', checkpoint_id: '1f029ca3-1f5b-6704-8004-820c16b69a5a' } },
metadata: { source: 'loop', writes: { call_model: { messages: AIMessage { content: "Your name is Bob." } } }, step: 4, parents: {}, thread_id: '1' },
createdAt: '2025-05-05T16:01:24.680462+00:00',
parentConfig: { configurable: { thread_id: '1', checkpoint_ns: '', checkpoint_id: '1f029ca3-1790-6b0a-8003-baf965b6a38f' } },
tasks: [],
interrupts: []
},
// ... more state snapshots
]
将返回值与保存值解耦
使用entrypoint.final 将返回给调用者的内容与检查点中持久化的内容解耦。这在以下情况下很有用:
- 您希望返回计算结果(例如,摘要或状态),但保存不同的内部值以供下次调用使用。
- 您需要控制下次运行中传递给上一个参数的内容。
复制
向 AI 提问
import { entrypoint, MemorySaver } from "@langchain/langgraph";
const checkpointer = new MemorySaver();
const accumulate = entrypoint(
{ checkpointer, name: "accumulate" },
async (n: number, previous?: number) => {
const prev = previous || 0;
const total = prev + n;
// Return the *previous* value to the caller but save the *new* total to the checkpoint.
return entrypoint.final({ value: prev, save: total });
}
);
const config = { configurable: { thread_id: "my-thread" } };
console.log(await accumulate.invoke(1, config)); // 0
console.log(await accumulate.invoke(2, config)); // 1
console.log(await accumulate.invoke(3, config)); // 3
聊天机器人示例
一个使用函数式 API 和 @[InMemorySaver] 检查点器的简单聊天机器人示例。 该机器人能够记住之前的对话并从中断处继续。复制
向 AI 提问
import { BaseMessage } from "@langchain/core/messages";
import {
addMessages,
entrypoint,
task,
MemorySaver,
} from "@langchain/langgraph";
import { ChatAnthropic } from "@langchain/anthropic";
const model = new ChatAnthropic({ model: "claude-sonnet-4-5-20250929" });
const callModel = task(
"callModel",
async (messages: BaseMessage[]): Promise<BaseMessage> => {
const response = await model.invoke(messages);
return response;
}
);
const checkpointer = new MemorySaver();
const workflow = entrypoint(
{ checkpointer, name: "workflow" },
async (
inputs: BaseMessage[],
previous?: BaseMessage[]
): Promise<BaseMessage> => {
let messages = inputs;
if (previous) {
messages = addMessages(previous, inputs);
}
const response = await callModel(messages);
return entrypoint.final({
value: response,
save: addMessages(messages, response),
});
}
);
const config = { configurable: { thread_id: "1" } };
const inputMessage = { role: "user", content: "hi! I'm bob" };
for await (const chunk of await workflow.stream([inputMessage], {
...config,
streamMode: "values",
})) {
console.log(chunk.content);
}
const inputMessage2 = { role: "user", content: "what's my name?" };
for await (const chunk of await workflow.stream([inputMessage2], {
...config,
streamMode: "values",
})) {
console.log(chunk.content);
}
长期记忆
长期内存允许在不同的 线程 ID 之间存储信息。这对于在一个对话中了解给定用户的信息并在另一个对话中使用它可能很有用。工作流
- 工作流和代理指南,了解更多如何使用函数式 API 构建工作流的示例。
与其他库集成
- 使用函数式 API 将 LangGraph 的功能添加到其他框架:将 LangGraph 的持久性、内存和流式传输等功能添加到其他不直接提供这些功能的代理框架中。
以编程方式连接这些文档到 Claude、VSCode 等,通过 MCP 获取实时答案。