跳到主要内容
本教程将向您展示如何使用 LangSmith 与流行的测试工具(Pytest、Vitest 和 Jest)集成来评估您的 LLM 应用程序。我们将创建一个 ReAct 代理,用于回答有关上市股票的问题,并为其编写一套全面的测试。

设置

本教程使用 LangGraph 进行代理编排,OpenAI 的 GPT-4oTavily 进行搜索,E2B 的代码解释器,以及 Polygon 检索股票数据,但稍作修改即可适用于其他框架、模型和工具。Tavily、E2B 和 Polygon 均可免费注册。

安装

首先,安装创建代理所需的包
pip install -U langgraph langchain[openai] langchain-community e2b-code-interpreter
接下来,安装测试框架
# Make sure you have langsmith>=0.3.1
pip install -U "langsmith[pytest]"

环境变量

设置以下环境变量
export LANGSMITH_TRACING=true
export LANGSMITH_API_KEY=<YOUR_LANGSMITH_API_KEY>
export OPENAI_API_KEY=<YOUR_OPENAI_API_KEY>
export TAVILY_API_KEY=<YOUR_TAVILY_API_KEY>
export E2B_API_KEY=<YOUR_E2B_API_KEY>
export POLYGON_API_KEY=<YOUR_POLYGON_API_KEY>

创建您的应用

为了定义我们的 React 代理,我们将使用 LangGraph/LangGraph.js 进行编排,并使用 LangChain 处理 LLM 和工具。

定义工具

首先,我们将定义代理中要使用的工具。总共会有 3 种工具
  • 使用 Tavily 的搜索工具
  • 使用 E2B 的代码解释器工具
  • 使用 Polygon 的股票信息工具
from langchain_community.tools import TavilySearchResults
from e2b_code_interpreter import Sandbox
from langchain_community.tools.polygon.aggregates import PolygonAggregates
from langchain_community.utilities.polygon import PolygonAPIWrapper
from typing_extensions import Annotated, TypedDict, Optional, Literal

# Define search tool
search_tool = TavilySearchResults(
  max_results=5,
  include_raw_content=True,
)

# Define code tool
def code_tool(code: str) -> str:
  """Execute python code and return the result."""
  sbx = Sandbox()
  execution = sbx.run_code(code)

  if execution.error:
      return f"Error: {execution.error}"
  return f"Results: {execution.results}, Logs: {execution.logs}"

# Define input schema for stock ticker tool
class TickerToolInput(TypedDict):
  """Input format for the ticker tool.
    The tool will pull data in aggregate blocks (timespan_multiplier * timespan) from the from_date to the to_date
  """
  ticker: Annotated[str, ..., "The ticker symbol of the stock"]
  timespan: Annotated[Literal["minute", "hour", "day", "week", "month", "quarter", "year"], ..., "The size of the time window."]
  timespan_multiplier: Annotated[int, ..., "The multiplier for the time window"]
  from_date: Annotated[str, ..., "The date to start pulling data from, YYYY-MM-DD format - ONLY include the year month and day"]
  to_date: Annotated[str, ..., "The date to stop pulling data, YYYY-MM-DD format - ONLY include the year month and day"]

api_wrapper = PolygonAPIWrapper()
polygon_aggregate = PolygonAggregates(api_wrapper=api_wrapper)

# Define stock ticker tool
def ticker_tool(query: TickerToolInput) -> str:
  """Pull data for the ticker."""
  return polygon_aggregate.invoke(query)

定义代理

现在我们已经定义了所有的工具,我们可以使用 create_agent 来创建我们的代理。
from typing_extensions import Annotated, TypedDict
from langchain.agents import create_agent


class AgentOutputFormat(TypedDict):
    numeric_answer: Annotated[float | None, ..., "The numeric answer, if the user asked for one"]
    text_answer: Annotated[str | None, ..., "The text answer, if the user asked for one"]
    reasoning: Annotated[str, ..., "The reasoning behind the answer"]

agent = create_agent(
    model="gpt-4o-mini",
    tools=[code_tool, search_tool, polygon_aggregates],
    response_format=AgentOutputFormat,
    system_prompt="You are a financial expert. Respond to the users query accurately",
)

编写测试

现在我们已经定义了代理,让我们编写一些测试以确保基本功能。在本教程中,我们将测试代理的工具调用能力是否正常,代理是否知道忽略不相关的问题,以及它是否能够回答涉及使用所有工具的复杂问题。 我们首先需要设置一个测试文件并在文件顶部添加所需的导入。
Create a `tests/test_agent.py` file.

from app import agent, polygon_aggregates, search_tool # import from wherever your agent is defined
import pytest
from langsmith import testing as t

测试 1:处理不相关问题

第一个测试将是简单地检查代理是否不会对不相关的查询使用工具。
@pytest.mark.langsmith
@pytest.mark.parametrize(
  # <-- Can still use all normal pytest markers
  "query",
  ["Hello!", "How are you doing?"],
)
def test_no_tools_on_offtopic_query(query: str) -> None:
  """Test that the agent does not use tools on offtopic queries."""
  # Log the test example
  t.log_inputs({"query": query})
  expected = []
  t.log_reference_outputs({"tool_calls": expected})
  # Call the agent's model node directly instead of running the ReACT loop.
  result = agent.nodes["agent"].invoke(
      {"messages": [{"role": "user", "content": query}]}
  )
  actual = result["messages"][0].tool_calls
  t.log_outputs({"tool_calls": actual})
  # Check that no tool calls were made.
  assert actual == expected

测试 2:简单工具调用

对于工具调用,我们将验证代理是否使用正确的参数调用了正确的工具。
@pytest.mark.langsmith
def test_searches_for_correct_ticker() -> None:
  """Test that the model looks up the correct ticker on simple query."""
  # Log the test example
  query = "What is the price of Apple?"
  t.log_inputs({"query": query})
  expected = "AAPL"
  t.log_reference_outputs({"ticker": expected})
  # Call the agent's model node directly instead of running the full ReACT loop.
  result = agent.nodes["agent"].invoke(
      {"messages": [{"role": "user", "content": query}]}
  )
  tool_calls = result["messages"][0].tool_calls
  if tool_calls[0]["name"] == polygon_aggregates.name:
      actual = tool_calls[0]["args"]["ticker"]
  else:
      actual = None
  t.log_outputs({"ticker": actual})
  # Check that the right ticker was queried
  assert actual == expected

测试 3:复杂工具调用

有些工具调用比其他工具更容易测试。对于股票代码查询,我们可以断言搜索了正确的股票代码。对于编码工具,工具的输入和输出的限制较少,并且有很多方法可以得到正确的答案。在这种情况下,通过运行完整的代理并断言它既调用了编码工具又得到了正确的答案,来测试工具是否正确使用会更简单。
@pytest.mark.langsmith
def test_executes_code_when_needed() -> None:
  query = (
      "In the past year Facebook stock went up by 66.76%, "
      "Apple by 25.24%, Google by 37.11%, Amazon by 47.52%, "
      "Netflix by 78.31%. Whats the avg return in the past "
      "year of the FAANG stocks, expressed as a percentage?"
  )
  t.log_inputs({"query": query})
  expected = 50.988
  t.log_reference_outputs({"response": expected})
  # Test that the agent executes code when needed
  result = agent.invoke({"messages": [{"role": "user", "content": query}]})
  t.log_outputs({"result": result["structured_response"].get("numeric_answer")})
  # Grab all the tool calls made by the LLM
  tool_calls = [
      tc["name"]
      for msg in result["messages"]
      for tc in getattr(msg, "tool_calls", [])
  ]
  # This will log the number of steps taken by the agent, which is useful for
  # determining how efficiently the agent gets to an answer.
  t.log_feedback(key="num_steps", score=len(result["messages"]) - 1)
  # Assert that the code tool was used
  assert "code_tool" in tool_calls
  # Assert that a numeric answer was provided:
  assert result["structured_response"].get("numeric_answer") is not None
  # Assert that the answer is correct
  assert abs(result["structured_response"]["numeric_answer"] - expected) <= 0.01

测试 4:LLM 作为评判者

我们将通过运行 LLM 作为评判者评估来确保代理的答案基于搜索结果。为了将 LLM 作为评判者的调用与我们的代理分开跟踪,我们将使用 LangSmith 提供的 Python 中的 trace_feedback 上下文管理器和 JS/TS 中的 wrapEvaluator 函数。
from typing_extensions import Annotated, TypedDict
from langchain.chat_models import init_chat_model

class Grade(TypedDict):
  """Evaluate the groundedness of an answer in source documents."""
  score: Annotated[
      bool,
      ...,
      "Return True if the answer is fully grounded in the source documents, otherwise False.",
  ]

judge_llm = init_chat_model("gpt-4o").with_structured_output(Grade)

@pytest.mark.langsmith
def test_grounded_in_source_info() -> None:
  """Test that response is grounded in the tool outputs."""
  query = "How did Nvidia stock do in 2024 according to analysts?"
  t.log_inputs({"query": query})
  result = agent.invoke({"messages": [{"role": "user", "content": query}]})
  # Grab all the search calls made by the LLM
  search_results = "\n\n".join(
      msg.content
      for msg in result["messages"]
      if msg.type == "tool" and msg.name == search_tool.name
  )
  t.log_outputs(
      {
          "response": result["structured_response"].get("text_answer"),
          "search_results": search_results,
      }
  )
  # Trace the feedback LLM run separately from the agent run.
  with t.trace_feedback():
      # Instructions for the LLM judge
      instructions = (
          "Grade the following ANSWER. "
          "The ANSWER should be fully grounded in (i.e. supported by) the source DOCUMENTS. "
          "Return True if the ANSWER is fully grounded in the DOCUMENTS. "
          "Return False if the ANSWER is not grounded in the DOCUMENTS."
      )
      answer_and_docs = (
          f"ANSWER: {result['structured_response'].get('text_answer', '')}\n"
          f"DOCUMENTS:\n{search_results}"
      )
      # Run the judge LLM
      grade = judge_llm.invoke(
          [
              {"role": "system", "content": instructions},
              {"role": "user", "content": answer_and_docs},
          ]
      )
      t.log_feedback(key="groundedness", score=grade["score"])
  assert grade['score']

运行测试

设置好配置文件后(如果您正在使用 Vitest 或 Jest),您可以使用以下命令运行测试
Create a `ls.vitest.config.ts` file:

import { defineConfig } from "vitest/config";

export default defineConfig({
  test: {
    include: ["**/*.eval.?(c|m)[jt]s"],
    reporters: ["langsmith/vitest/reporter"],
    setupFiles: ["dotenv/config"],
  },
});
pytest --langsmith-output tests

参考代码

请记住还要将 VitestJest 的配置文件添加到您的项目中。

代理

from e2b_code_interpreter import Sandbox
from langchain_community.tools import PolygonAggregates, TavilySearchResults
from langchain_community.utilities.polygon import PolygonAPIWrapper
from langchain.agents import create_agent
from typing_extensions import Annotated, TypedDict


search_tool = TavilySearchResults(
    max_results=5,
    include_raw_content=True,
)

def code_tool(code: str) -> str:
    """Execute python code and return the result."""
    sbx = Sandbox()
    execution = sbx.run_code(code)

    if execution.error:
        return f"Error: {execution.error}"
    return f"Results: {execution.results}, Logs: {execution.logs}"

polygon_aggregates = PolygonAggregates(api_wrapper=PolygonAPIWrapper())

class AgentOutputFormat(TypedDict):
    numeric_answer: Annotated[
        float | None, ..., "The numeric answer, if the user asked for one"
    ]
    text_answer: Annotated[
        str | None, ..., "The text answer, if the user asked for one"
    ]
    reasoning: Annotated[str, ..., "The reasoning behind the answer"]

agent = create_agent(
    model="gpt-4o-mini",
    tools=[code_tool, search_tool, polygon_aggregates],
    response_format=AgentOutputFormat,
    system_prompt="You are a financial expert. Respond to the users query accurately",
)

测试

# from app import agent, polygon_aggregates, search_tool # import from wherever your agent is defined
import pytest
from langchain.chat_models import init_chat_model
from langsmith import testing as t
from typing_extensions import Annotated, TypedDict

@pytest.mark.langsmith
@pytest.mark.parametrize(
  # <-- Can still use all normal pytest markers
  "query",
  ["Hello!", "How are you doing?"],
)
def test_no_tools_on_offtopic_query(query: str) -> None:
  """Test that the agent does not use tools on offtopic queries."""
  # Log the test example
  t.log_inputs({"query": query})
  expected = []
  t.log_reference_outputs({"tool_calls": expected})
  # Call the agent's model node directly instead of running the ReACT loop.
  result = agent.nodes["agent"].invoke(
      {"messages": [{"role": "user", "content": query}]}
  )
  actual = result["messages"][0].tool_calls
  t.log_outputs({"tool_calls": actual})
  # Check that no tool calls were made.
  assert actual == expected

@pytest.mark.langsmith
def test_searches_for_correct_ticker() -> None:
  """Test that the model looks up the correct ticker on simple query."""
  # Log the test example
  query = "What is the price of Apple?"
  t.log_inputs({"query": query})
  expected = "AAPL"
  t.log_reference_outputs({"ticker": expected})
  # Call the agent's model node directly instead of running the full ReACT loop.
  result = agent.nodes["agent"].invoke(
      {"messages": [{"role": "user", "content": query}]}
  )
  tool_calls = result["messages"][0].tool_calls
  if tool_calls[0]["name"] == polygon_aggregates.name:
      actual = tool_calls[0]["args"]["ticker"]
  else:
      actual = None
  t.log_outputs({"ticker": actual})
  # Check that the right ticker was queried
  assert actual == expected

@pytest.mark.langsmith
def test_executes_code_when_needed() -> None:
  query = (
      "In the past year Facebook stock went up by 66.76%, "
      "Apple by 25.24%, Google by 37.11%, Amazon by 47.52%, "
      "Netflix by 78.31%. Whats the avg return in the past "
      "year of the FAANG stocks, expressed as a percentage?"
  )
  t.log_inputs({"query": query})
  expected = 50.988
  t.log_reference_outputs({"response": expected})
  # Test that the agent executes code when needed
  result = agent.invoke({"messages": [{"role": "user", "content": query}]})
  t.log_outputs({"result": result["structured_response"].get("numeric_answer")})
  # Grab all the tool calls made by the LLM
  tool_calls = [
      tc["name"]
      for msg in result["messages"]
      for tc in getattr(msg, "tool_calls", [])
  ]
  # This will log the number of steps taken by the agent, which is useful for
  # determining how efficiently the agent gets to an answer.
  t.log_feedback(key="num_steps", score=len(result["messages"]) - 1)
  # Assert that the code tool was used
  assert "code_tool" in tool_calls
  # Assert that a numeric answer was provided:
  assert result["structured_response"].get("numeric_answer") is not None
  # Assert that the answer is correct
  assert abs(result["structured_response"]["numeric_answer"] - expected) <= 0.01

class Grade(TypedDict):
  """Evaluate the groundedness of an answer in source documents."""
  score: Annotated[
      bool,
      ...,
      "Return True if the answer is fully grounded in the source documents, otherwise False.",
  ]

judge_llm = init_chat_model("gpt-4o").with_structured_output(Grade)

@pytest.mark.langsmith
def test_grounded_in_source_info() -> None:
  """Test that response is grounded in the tool outputs."""
  query = "How did Nvidia stock do in 2024 according to analysts?"
  t.log_inputs({"query": query})
  result = agent.invoke({"messages": [{"role": "user", "content": query}]})
  # Grab all the search calls made by the LLM
  search_results = "\n\n".join(
      msg.content
      for msg in result["messages"]
      if msg.type == "tool" and msg.name == search_tool.name
  )
  t.log_outputs(
      {
          "response": result["structured_response"].get("text_answer"),
          "search_results": search_results,
      }
  )
  # Trace the feedback LLM run separately from the agent run.
  with t.trace_feedback():
      # Instructions for the LLM judge
      instructions = (
          "Grade the following ANSWER. "
          "The ANSWER should be fully grounded in (i.e. supported by) the source DOCUMENTS. "
          "Return True if the ANSWER is fully grounded in the DOCUMENTS. "
          "Return False if the ANSWER is not grounded in the DOCUMENTS."
      )
      answer_and_docs = (
          f"ANSWER: {result['structured_response'].get('text_answer', '')}\n"
          f"DOCUMENTS:\n{search_results}"
      )
      # Run the judge LLM
      grade = judge_llm.invoke(
          [
              {"role": "system", "content": instructions},
              {"role": "user", "content": answer_and_docs},
          ]
      )
      t.log_feedback(key="groundedness", score=grade["score"])
  assert grade["score"]

以编程方式连接这些文档到 Claude、VSCode 等,通过 MCP 获取实时答案。
© . This site is unofficial and not affiliated with LangChain, Inc.