安装
使用您首选的包管理器安装所需包复制
向 AI 提问
pip install langsmith autogen openinference-instrumentation-autogen openinference-instrumentation-openai
需要 LangSmith Python SDK 版本
langsmith>=0.4.26 才能获得最佳 OpenTelemetry 支持。设置
1. 配置环境变量
设置您的 API 密钥和项目名称复制
向 AI 提问
export LANGSMITH_API_KEY=<your_langsmith_api_key>
export LANGSMITH_PROJECT=<your_project_name>
export OPENAI_API_KEY=<your_openai_api_key>
2. 配置 OpenTelemetry 集成
在您的 AutoGen 应用程序中,导入并配置 LangSmith OpenTelemetry 集成以及 AutoGen 和 OpenAI 仪表工具。复制
向 AI 提问
from langsmith.integrations.otel import configure
from openinference.instrumentation.autogen import AutogenInstrumentor
from openinference.instrumentation.openai import OpenAIInstrumentor
# Configure LangSmith tracing
configure(project_name="autogen-demo")
# Instrument AutoGen and OpenAI calls
AutogenInstrumentor().instrument()
OpenAIInstrumentor().instrument()
您无需设置任何 OpenTelemetry 环境变量或手动配置导出器——
configure() 会自动处理所有事情。3. 创建并运行您的 AutoGen 应用程序
配置完成后,您的 AutoGen 应用程序将自动向 LangSmith 发送追踪。复制
向 AI 提问
import autogen
from openinference.instrumentation.autogen import AutogenInstrumentor
from openinference.instrumentation.openai import OpenAIInstrumentor
from langsmith.integrations.otel import configure
import os
import dotenv
# Load environment variables
dotenv.load_dotenv(".env.local")
# Configure LangSmith tracing
configure(project_name="autogen-code-review")
# Instrument AutoGen and OpenAI
AutogenInstrumentor().instrument()
OpenAIInstrumentor().instrument()
# Configure your agents
config_list = [
{
"model": "gpt-4",
"api_key": os.getenv("OPENAI_API_KEY"),
}
]
# Create a code reviewer agent
code_reviewer = autogen.AssistantAgent(
name="code_reviewer",
llm_config={"config_list": config_list},
system_message="""You are an expert code reviewer. Your role is to:
1. Review code for bugs, security issues, and best practices
2. Suggest improvements and optimizations
3. Provide constructive feedback
Always be thorough but constructive in your reviews.""",
)
# Create a developer agent
developer = autogen.AssistantAgent(
name="developer",
llm_config={"config_list": config_list},
system_message="""You are a senior software developer. Your role is to:
1. Write clean, efficient code
2. Address feedback from code reviews
3. Explain your implementation decisions
4. Implement requested features and fixes""",
)
# Create a user proxy agent
user_proxy = autogen.UserProxyAgent(
name="user_proxy",
human_input_mode="NEVER",
max_consecutive_auto_reply=8,
is_termination_msg=lambda x: x.get("content", "").rstrip().endswith("TERMINATE"),
code_execution_config={"work_dir": "workspace"},
llm_config={"config_list": config_list},
)
def run_code_review_session(task_description: str):
"""Run a multi-agent code review session."""
# Create a group chat with the agents
groupchat = autogen.GroupChat(
agents=[user_proxy, developer, code_reviewer],
messages=[],
max_round=10
)
# Create a group chat manager
manager = autogen.GroupChatManager(
groupchat=groupchat,
llm_config={"config_list": config_list}
)
# Start the conversation
user_proxy.initiate_chat(
manager,
message=f"""
Task: {task_description}
Developer: Please implement the requested feature.
Code Reviewer: Please review the implementation and provide feedback.
Work together to create a high-quality solution.
"""
)
return "Code review session completed"
# Example usage
if __name__ == "__main__":
task = """
Create a Python function that implements a binary search algorithm.
The function should:
- Take a sorted list and a target value as parameters
- Return the index of the target if found, or -1 if not found
- Include proper error handling and documentation
"""
result = run_code_review_session(task)
print(f"Result: {result}")
高级用法
自定义元数据和标签
您可以通过在 AutoGen 应用程序中设置 span 属性来向追踪添加自定义元数据。复制
向 AI 提问
from opentelemetry import trace
# Get the current tracer
tracer = trace.get_tracer(__name__)
def run_code_review_session(task_description: str):
with tracer.start_as_current_span("autogen_code_review") as span:
# Add custom metadata
span.set_attribute("langsmith.metadata.session_type", "code_review")
span.set_attribute("langsmith.metadata.agent_count", "3")
span.set_attribute("langsmith.metadata.task_complexity", "medium")
span.set_attribute("langsmith.span.tags", "autogen,code-review,multi-agent")
# Your AutoGen code here
groupchat = autogen.GroupChat(
agents=[user_proxy, developer, code_reviewer],
messages=[],
max_round=10
)
manager = autogen.GroupChatManager(
groupchat=groupchat,
llm_config={"config_list": config_list}
)
user_proxy.initiate_chat(manager, message=task_description)
return "Session completed"
与其他工具结合使用
您可以通过添加并将其初始化为仪表工具,将 AutoGen 仪表工具与其他仪表工具(例如 Semantic Kernel、DSPy)结合使用。复制
向 AI 提问
from langsmith.integrations.otel import configure
from openinference.instrumentation.autogen import AutogenInstrumentor
from openinference.instrumentation.openai import OpenAIInstrumentor
from openinference.instrumentation.dspy import DSPyInstrumentor
# Configure LangSmith tracing
configure(project_name="multi-framework-app")
# Initialize multiple instrumentors
AutogenInstrumentor().instrument()
OpenAIInstrumentor().instrument()
DSPyInstrumentor().instrument()
# Your application code using multiple frameworks
以编程方式连接这些文档到 Claude、VSCode 等,通过 MCP 获取实时答案。